2. [12 points] Solve each of the equations below.

Show your work step-by-step and give the exact solutions in the answer blanks provided.
a. [3 points] $4(3.2)^{t}=7$

Solution: Dividing both sides of the equation by 4 we find $(3.2)^{t}=1.75$. We then use logarithms to find t.

$$
\begin{aligned}
\log \left((3.2)^{t}\right) & =\log (1.75) \\
t \log (3.2) & =\log (1.75) \\
t & =\frac{\log (1.75)}{\log (3.2)}
\end{aligned}
$$

Answer: $t=\xrightarrow{\frac{\log (1.75)}{\log (3.2)}}$
b. [3 points] $3 e^{\ln (x+2)}=8$

Solution: Dividing both sides of the equation by 3 , we have $e^{\ln (x+2)}=\frac{8}{3}$.
Since $e^{\ln (x+2)}=x+2$, we find that $x+2=\frac{8}{3}$ so $x=\frac{8}{3}-2=\frac{2}{3}$.
$\frac{2}{3}$
Answer: $x=$ \qquad
c. $[3$ points $] e^{m+5}=6 e^{-3 m}$

Solution:

We first take the natural logarithm of both sides of the equation. Using properties of logarithms we can then solve for m.

$$
\begin{aligned}
\ln \left(e^{m+5}\right) & =\ln \left(6 e^{-3 m}\right) \\
\ln \left(e^{m+5}\right) & =\ln (6)+\ln \left(e^{-3 m}\right) \\
m+5 & =\ln (6)-3 m \\
4 m & =\ln (6)-5 \\
m & =\frac{\ln (6)-5}{4}
\end{aligned}
$$

Answer: $m=\xrightarrow{\frac{\ln (6)-5}{4}}$
d. [3 points] $\ln (y+3)-\ln (1-y)=\ln (6)$

Solution: We rewrite the left side of the equation as $\ln \left(\frac{y+3}{1-y}\right)$. Then $\ln \left(\frac{y+3}{1-y}\right)=\ln (6)$ so exponentiating we have $e^{\ln \left(\frac{y+3}{1-y}\right)}=e^{\ln (6)}$ and hence $\frac{y+3}{1-y}=6$. Then $y+3=6(1-y)$ so $y+3=6-6 y$. Hence $7 y=3$ and finally $y=3 / 7$.
Answer: $y=$

