5. [12 points] Note: You do not have to show any work on this page.
a. [6 points] If $(2,-6)$ is a point on the graph of $y=h(x)$, find a point on the graph of each of the functions below.
(i) $\left(\frac{1}{-6}\right)$ is a point on the graph of $y=h(2 x)$.

Solution: To obtain the graph of $y=h(2 x)$ from the graph of $y=h(x)$ we compress horizontally towards the y-axis by a factor of $1 / 2$, moving $(2,-6)$ to the point $(-1,6)$.
(ii) $\left(\frac{-2}{-5}\right)$ is a point on the graph of $y=h(-x)+1$.

Solution: To obtain the graph of $y=h(-x)+1$ from the graph of $y=h(x)$, we first reflect the graph across the y-axis (moving the point $(2,-6)$ to the point $(-2,-6)$) and then shift the resulting graph up by one unit (moving the point $(-2,-6)$ to the point $(-2,-5))$.
(iii) $\left(\frac{3}{18}\right)$ is a point on the graph of $y=-3 h(x-1)$.

Solution: To obtain the graph of $y=-3 h(x-1)$ from the graph of $y=h(x)$, we first stretch the graph vertically away from the x-axis by a factor of 3 (moving the point $(2,-6)$ to the point $(2,-18))$. Then we reflect this graph across the x-axis (moving the point $(2,-18)$ to the point $(2,18))$. Finally, we shift the resulting graph to the right by one unit (moving the point $(2,18)$ to the point $(3,18)$).
b. [6 points] Some data for functions g and k is provided in the table below. Use this data to answer the questions that follow.

x	1	2	3
$g(x)$	4	-1	-2
$k(x)$	5	4	1

(i) If $g(x)$ is an even function, find $g(-2)$.

Solution: Since g is even, $g(-2)=g(2)$ and the table indicates that $g(2)=-1$. Hence $g(-2)=-1$.

$$
\text { Answer: } g(-2)=
$$

(ii) Let $m(t)=2 k(-t+1)$. Find $m(-2)$.

Solution: Using the provided formula for $m(t)$ and the given table, we have $m(-2)=2 k(-(-2)+1)=2 k(2+1)=2 k(3)=2(1)=2$.

Answer: $m(-2)=$ \qquad
(iii) Let $n(x)=k(x-1)$. If $n(x)$ is an odd function, find $k(-3)$.

Solution: Using the given formula (or the implication that the graph of $y=n(x)$ results from shifting the graph of $y=k(x)$ to the right one unit), we have $k(-3)=n(-2)$. Now n is odd so $n(-2)=-n(2)$. Using the formula provided, we thus find that $k(-3)=$ $n(-2)=-n(2)=-k(2-1)=-k(1)=-5$. Hence $k(-3)=-5$.

Answer: $k(-3)=\underline{-5}$

