6. [13 points] A study of mammals in a particular county in Michigan found that at the time of the study there were N groundhogs and that the population of groundhogs was increasing at a rate of 5% per year. Let $G(t)$ be the number of groundhogs in the county t years after the study.
For full credit on this problem, you must solve for all answers algebraically and show all work step-by-step. Answers should either be in exact form or be given to at least four decimal places.
a. [2 points] Find a formula for $G(t)$.

Answer: $G(t)=$ \qquad _.
b. [3 points] Find the continuous growth rate of the groundhog population.

Solution: In the two standard forms for exponential functions ($Q=a b^{t}$ and $Q=a e^{k t}$) we have $b=e^{k}$ so $\ln b=k$. Here, b is the growth factor and k is the continuous growth rate. In the case of these groundhogs, the annual growth factor is 1.05 , so the continuous growth rate is $\ln (1.05)$ (or about 4.8790%) per year.

Answer: $\quad \ln (1.05)$ (or about 4.8790%) per year
c. [3 points] How long will it take for the number of groundhogs to double?

Solution: If d is the number of years it takes for the number of groundhogs to double, then $G(d)=2 N$. Hence we have $2 N=N(1.05)^{d}$ so $2=(1.05)^{d}$. Taking the natural logarithm of both sides of this equation, we find that $\ln (2)=\ln \left((1.05)^{d}\right)=d \ln (1.05)$. Hence $d=\ln (2) / \ln (1.05)$. So, it takes $\ln (2) / \ln (1.05)$ (about 14.2067) years for the number of groundhogs to double.

Answer: $\ln (2) / \ln (1.05)$ (or about 14.2067) years
d. [5 points] In the same study, it was determined that the number of moles and rabbits in the county t years after the study would be given by the formulas $M(t)=500(0.99)^{t}$ and $R(t)=200 e^{0.1 t}$, respectively. According to these models, when will the population of rabbits be 50% larger than the population of moles?

Solution: The population of rabbits will be 50% larger than the population of moles when $R(t)=1.5 M(t)$. So we need to find t so that $200 e^{0.1 t}=1.5\left(500(0.99)^{t}\right)$. Using the definition and basic properties of the natural logarithm, we find

$$
\begin{aligned}
200 e^{0.1 t} & =1.5\left(500(0.99)^{t}\right) \\
e^{0.1 t} & =3.75(0.99)^{t} \\
0.1 t & =\ln \left(3.75(0.99)^{t}\right)=\ln (3.75)+\ln \left((0.99)^{t}\right)=\ln (3.75)+t \ln (0.99) \\
0.1 t-t \ln (0.99) & =\ln (3.75) \\
t(0.1-\ln (0.99)) & =\ln (3.75) \\
t & =\ln (3.75) /(0.1-\ln (0.99))
\end{aligned}
$$

Therefore, the population of rabbits will be 50% greater than the population of moles $\ln (3.75) /(0.1-\ln (0.99))$ (or about 12.0105$)$ years after the study.

Answer: $\quad \ln (3.75) /(0.1-\ln (0.99))$ (or about 12.0105$)$ years after the study

