6. [12 points] A shipment of fruit is delivered to a warehouse. The boxes containing the fruit were not properly sealed and contained fruit flies. The population of fruit flies (in thousands) in the warehouse is given by the function

$$
F(t)=12-10 e^{-0.17 t}
$$

where t is the number of days after the fruit was delivered to the warehouse. Assume that there were no fruit flies in the warehouse before the fruit was delivered.
a. [2 points] How many fruit flies entered the warehouse when the fruit was delivered? Include units.

Answer: \qquad
b. [4 points] How long did it take for the population of fruit flies to double after the fruit was delivered into the warehouse? Show all your work and include units.
\qquad
$t=$
c. [2 points] Use your graphing calculator to find $\lim _{t \rightarrow \infty} F(t)$. Include a sketch of the graph to support your answer.

$$
\lim _{t \rightarrow \infty} F(t)=
$$

\qquad
Problem continues on next page

The statement of the problem has been rewritten for your convenience:
A shipment of fruit is delivered to a warehouse. The boxes containing the fruit were not properly sealed and contained fruit flies. The population of fruit flies (in thousands) in the warehouse is given by the function

$$
F(t)=12-10 e^{-0.17 t}
$$

where t is the number of days after the fruit was delivered to the warehouse. Assume that there were no fruit flies in the warehouse before the fruit was delivered.
d. [4 points] Five days after the fruit was delivered to the warehouse, a powerful pesticide is applied to control the population of fruit flies. The pesticide causes the population of fruit flies to decay at a continuous rate of 41% per day. Find a formula for $P(T)$, the number of fruit flies (in thousands) T days after the pesticide was applied.

$$
P(T)=
$$

\qquad

