5. [15 points]
a. [6 points] Consider the function

$$
F(x)=\left\{\begin{array}{lll}
x^{2} & \text { for } & 0 \leq x \leq 2 \\
7+\frac{x}{5} & \text { for } & 2<x \leq 4
\end{array}\right.
$$

Find a piecewise defined formula for the function $G(x)=3 F(x-1)$.

$$
G(x)= \begin{cases}\square & \text { for } \\ \square & \text { for }\end{cases}
$$

b. [5 points] Some of the values of the functions $H(x), K(x)$ and $J(x)$ are shown in the tables below

x	0	1	2	3
$H(x)$	1	-2	3	-4

x	-2	-1	0	1
$J(x)$	2	-1	4	-3

x	0	2	4	6
$K(x)$	-1	2	-3	4

i) The functions $J(x)$ and $K(x)$ are obtained by applying transformations to the function $H(x)$. Find a possible formula for $J(x)$ and $K(x)$. A list of possible answers is shown below. If the answer is not included in the list write your own formula for it in terms of transformations of the function $H(x)$.

$$
\begin{array}{cccc}
J(x)= & K(x)= \\
2 H(x-2) & H(x-2)+1 & 2 H(x+2) & H(x+2)+1 \\
H(-2 x) & -H\left(\frac{1}{2} x\right) & -H(2 x) & H\left(-\frac{1}{2} x\right)
\end{array}
$$

ii) Suppose $H(x)$ is an even function, what is the value of $H(-3)$?
c. [4 points] The graph of a function $w=f(z)$ contains the point $(5,-1)$ and has a horizontal asymptote at $w=2$. Let $g(z)=1-f\left(\frac{z}{2}+3\right)$. Find a point in the graph $g(z)$ and the equation of its horizontal asymptote.

The graph of $g(z)$ contains the point : \qquad

Equation of the horizontal asymptote of $g(z)$ at \qquad

