2. [11 points] Let $P(t)$ be the average temperature (in ${ }^{0} \mathrm{~F}$) in a small moon that rotates around a planet at time t (in hours). Suppose that $P(t)$ is a periodic function with period less than 20 hours. The graph of $y=P(t)$ is shown below

a. [2 points] Find the period of $P(t)$:

Solution: Period of $P(t)=16$.
b. [2 points] Find the amplitude of the function $P(t)$:

Solution: Amplitude $=\frac{50-(-10)}{2}=30^{\circ} \mathrm{F}$
c. [2 points] Find the equation of the midline of the function $P(t)$:

Solution: Midline: $y=\frac{50+(-10)}{2}=20$.
d. [3 points] What is the smallest value of t that satisfies $t>24$ and $P(t)=30$?

Solution: The solutions to $P(t)=30$ for $0<t<24$ are (from the graph) $t=2,6,18$ and 22 . Hence the next solution is at $t=18+16=34$ hours.
e. [2 points] Let $k(t)=2 P(3 t)$. What is the period of the function $k(t)$?

Solution: The graph of $k(t)$ can be obtained from the graph of $P(t)$ by applying a vertical stretch by 2 and a horizontal compression by $\frac{1}{3}$. The only transformation that determines the period of $k(t)$ is the horizontal compression, then the period of $k(t)$ is $\frac{16}{3}$ hours.

