2. [16 points]

a.	[4 points]	The domain and range of the function $y = f(x)$ are $[-2,6)$ a	and $(-\infty, -10]$,
	respectively	ly. What is the domain and range of $g(x) = 1 - f(\frac{1}{4}(x+8))$?	

Domain:_____

Range:____

b. [2 points] If $f(x) = |x^3|$, then the function f(x) is (circle your answer)

EVEN

ODD

NEITHER

c. [2 points] Complete the following sentence:

If $f(x) = 2^x$, then the graph of g(x) = f(x+3) can be obtained by applying a vertical stretch by a factor of ______ to the graph of y = f(x).

- **d**. [4 points] Find the equations of the vertical and horizontal asymptotes (if any) of the following functions. If a function does not have vertical or horizontal asymptotes write "None".
 - i) $y = 3e^{-0.4x} 2$

Vertical asymptote:

Horizontal asymptote:____

ii) $y = 1 - 7\log(3x + 1)$

Vertical asymptote:

Horizontal asymptote:_____

e. [2 points] Find two exact values of $-\pi < \theta \le \pi$, measured in radians, such that $\cos \theta = \cos(A)$, where $A = \frac{11}{5}\pi$ radians.

 $\theta =$ _____

f. [2 points] Let f(x) be a periodic function that has amplitude 4 and let g(x) = 3f(5x). Find the amplitude of the function g(x).

Amplitude of $g(x) = \underline{\hspace{1cm}}$