- **2**. [16 points]
 - **a.** [4 points] The domain and range of the function y = f(x) are [-2, 6) and $(-\infty, -10]$, respectively. What is the domain and range of $g(x) = 1 f(\frac{1}{4}(x+8))$?

Solution: Domain: [-16, 16) Range: $[11, \infty)$

b. [2 points] If $f(x) = |x^3|$, then the function f(x) is (circle your answer)

c. [2 points] Complete the following sentence:

Solution: If $f(x) = 2^x$, then the graph of g(x) = f(x+3) can be obtained by applying a vertical stretch by a factor of **8** to the graph of y = f(x).

d. [4 points] Find the equations of the vertical and horizontal asymptotes (if any) of the following functions. If a function does not have vertical or horizontal asymptotes write "None".

Solution: i) $y = 3e^{-0.4x} - 2$ Vertical asymptote: None Horizontal asymptote: y = -2. ii) $y = 1 - 7\log(3x + 1)$ Vertical asymptote: $x = -\frac{1}{3}$ Horizontal asymptote: None

e. [2 points] Find two exact values of $-\pi < \theta \leq \pi$, measured in radians, such that $\cos \theta = \cos(A)$, where $A = \frac{11}{5}\pi$ radians.

Solution:
$$\theta = \frac{1}{5}\pi, -\frac{1}{5}\pi.$$

f. [2 points] Let f(x) be a periodic function that has amplitude 4 and let g(x) = 3f(5x). Find the amplitude of the function g(x).

Amplitude of q(x) = 12

Solution: