3. [12 points] Let $C(t)$ and $A(t)$ be the production (in thousands of pounds) of corn and apples in a farm t years after 2002, where

$$
C(t)=200 e^{-0.4 t+1} \quad \text { and } \quad A(t)=120 e^{0.5 t}
$$

a. [3 points] What is the annual percent growth rate of the function $C(t)$? Your answer must be exact or accurate up to the first two decimals. Show all your work.

Solution: Since $C(t)=200 e^{-0.4 t+1}$, then $b=e^{-0.4}$ and $r=b-1=e^{-0.4}-1 \approx-0.32$.
b. [4 points] How long after 2002 will the production of corn be reduced to a third of its size in that year? Your answer must be exact or accurate up to the first two decimals. Show all your work.

Solution:

$$
\begin{aligned}
200 e^{-0.4 t+1} & =\frac{200}{3} e \\
e^{-0.4 t} & =\frac{1}{3} \\
-0.4 t & =\ln \left(\frac{1}{3}\right) \quad t=-\frac{1}{0.4} \ln \left(\frac{1}{3}\right) \approx 2.74 \text { years after } 2002 .
\end{aligned}
$$

c. [5 points] According to these functions, when will the production of corn be the same as the production of apples? Your answer must be in exact form. Show all your work.

Solution:

$$
\begin{aligned}
200 e^{-0.4 t+1} & =120 e^{0.5 t} \\
200 e\left(e^{-0.4 t}\right) & =120 e^{0.5 t} \\
\frac{200 e}{120} & =\frac{e^{0.5 t}}{e^{-0.4 t}} \\
e^{0.9 t} & =\frac{5}{3} e \\
0.9 t & =\ln \left(\frac{5}{3} e\right) \\
t & =\frac{1}{0.9} \ln \left(\frac{5}{3} e\right)
\end{aligned}
$$

