4. [7 points] Mad scientist Kiki LeBlanc is analyzing the amount of energy she needs to run another one of her time machines named Machine1. Below is a graph of $y=t(E)$, the number of years into the past or future she can send a 1 kg notebook when the energy consumption of Machine1 is E megawatt-hours (MWh).

a. [4 points] The function $t(E)$ (assuming the domain is $E \geq 3$ ) can be written in the form $t(E)=a \log (E)+b$ for some constants $a$ and $b$. Given the information in the graph, find $a$ and $b$ in exact form.

$$
\begin{gathered}
a=\frac{\frac{2}{\log 2}}{b=} . \\
-\frac{2 \log 3}{\log 2}
\end{gathered} .
$$

Solution: If we use the two points on the graph, we get the system of equations:

$$
\begin{aligned}
& 0=a \log (3)+b \\
& 2=a \log (6)+b .
\end{aligned}
$$

Solving for $b$ in both equations and setting those expressions equal gives us

$$
-a \log (3)=2-a \log (6)
$$

If we solve for $a$ we get

$$
a=\frac{2}{\log 6-\log 3}=\frac{2}{\log 2} .
$$

This means $b=-\frac{2 \log 3}{\log 2}$.
b. [3 points] Give a practical interpretation of the point $(6,2)$ on the graph.

Solution: The point $(6,2)$ on the graph means that, using Machine1, Kiki can send a 1 kg notebook 2 years into the past or future when it's supplied with 6 MWh of energy.

