5. [7 points] Another one of Kiki's time machines called Machine2 can send a 1 kg notebook $y=r(E)=2 \log (E)-3$ years into the past or future when it consumes E megawatt-hours (MWh) of energy.
a. [3 points] How much energy is required for the Machine 2 to send a 1 kg notebook 5 years into the future? Be sure to show your work and give your answer in exact form with units.

10000 MWh
of energy is required.
Solution: We need to fine E when $y=5$, so we set $5=2 \log (E)-3$. Then $4=\log (E)$ which means $E=10^{4}$.
b. [4 points] Kiki has noticed that if she triples the energy input of Machine2, the number of years a 1 kg notebook travels in time increases by a fixed amount (that is not dependent on $E)$. Find the amount of increase of $r(E)$ when E is tripled. Give your answer in exact form. Only solutions that show the amount of increase is not dependent on E will receive full credit.
$r(E)$ increases by $\quad 2 \log (3) \quad$ when E is tripled.
Solution: We subtract $r(3 E)-r(E)=2 \log (3 E)-3-(2 \log (E)-3)=2 \log (3)$.

