6. [7 points] Kiki is experimenting with a highly radioactive substance, Isotope-Z. Isotope-Z decays at a (non-continuous) rate of 20% per day.
a. [3 points] Find the continuous decay rate of Isotope-Z. Give your answer as a percentage estimated to three decimal places or in exact form.

The continuous decay rate of Isotope-Z is \qquad $-100 \ln (0.8)$

Solution: The daily growth factor for this substance is 0.8 . The continuous decay rate is the natural \log of the growth factor, so the continuous decay rate is $\ln (0.8)$. We multiply by 100 to make it a percentage, and we can leave it negative $(\ln (0.8)<0)$ or make it positive by adding a minus sign.
b. [4 points] Find the amount of time it takes for Isotope-Z to decrease to 60% of the initial amount present. Do not assume the initial amount is any specific number. Be sure to show all your work and leave your answer in exact form with units.

The amount of time is $\frac{\ln (0.6)}{\ln (0.8)}$

Solution: If we call the initial amount A, we can set $0.6 A=A(0.8)^{t}$. Then $0.6=(0.8)^{t}$. Taking \ln on both sides gives us $\ln (0.6)=t \ln (0.8)$ or $t=\frac{\ln (0.6)}{\ln (0.8)}$.

