2. [10 points] Below are some values of functions $f(x), g(x)$, and $h(x)$.

x	0	1	2	3	4
$f(x)$	2	0	4	4	3
$g(x)$	4	3	b	1	1
$h(x)$	3	a	3	0	0
$k(x)$	0	2	-3	1	0

Additionally:

- $h(x)=f(g(x))$
- The domain of $f(x)$ is $\{0,1,2,3,4\}$.
- $k(x)$ is an even, periodic function with period 10.
a. [6 points] Find the following values, or explain why they cannot be found from the given information. Be sure to show your work or explain your reasoning.
(i) a
(ii) b
(iii) $k(18)$

Solution:

(i) According to the table, $a=h(1)$, which by definition is $f(g(1))$. Using the table, $g(1)=3$, so $f(g(1))=f(3)=4$. Therefore, $a=4$.
(ii) According to the table, $b=g(2)$. We need to use the other facts from the table to find this value. In particular, we know $h(2)=f(g(2))=3$. So $g(2)$ must be a number b so that $f(b)=3$. The only such value is 4 . Therefore, $b=4$.
(iii) Since $k(x)$ is periodic with period 10 , we know that $k(18)=k(8)=k(-2)$. Further, we know $k(x)$ is even, so that $k(-2)=k(2)=-3$. Therefore, $k(18)=-3$.
b. [4 points] Find all solutions to the equation $k(f(x))=0$.

Solution: According to the table, $k(u)=0$ when $u=0$ or 4 , so we need to find x-values so that $f(x)=0$ or $f(x)=4$. The table tells us $f(1)=0$ and $f(2)=f(3)=4$, so the solutions are $x=1,2$, and 3 .

