d. [3 points] Let $T(k)$ be the total revenue, in dollars of both Mia and Jonathan k minutes after 9 am . Find a formula for $T(k)$ in terms of M and/or J.

Solution: $\quad T(k)=100(M(k / 60)+J(k / 60))$.
5. [12 points] The graph of a sinusoidal function $y=K(t)$ is given below.

a. [7 points] Find the following.
(i) The amplitude of $K(t)$.
(ii) The midline of $K(t)$.
(iii) The period of $K(t)$.
(iv) A formula for $K(t)$.

Solution:

(i) $(8-2) / 2=3$
(ii) $y=5$
(iii) 6
(iv) Note that the function starts at its midline at $t=0$ and increases to the right, so we can use $\sin (t)$ without a horizontal shift or a reflections. Using the values we've found above, we get $3 \sin ((2 \pi / 6) t)+5$.
b. [5 points] Find the first three positive values of t for which $K(t)=7$. Give your answer in exact form.

Solution: We want to know when

$$
3 \sin ((2 \pi / 6) t)+5=7
$$

Subtracting 5 from both sides, dividing by 3 , and taking arcsin, we find

$$
(2 \pi / 6) t=\arcsin (2 / 3)
$$

which gives us

$$
t=\frac{3}{\pi} \arcsin (2 / 3)
$$

This is the first solution. We can find the second by using symmetries:

$$
t=3-\frac{3}{\pi} \arcsin (2 / 3)
$$

The third can be found by adding one period to the first solution:

$$
t=6+\frac{3}{\pi} \arcsin (2 / 3) .
$$

