6. [11 points] A duck in swimming in circles along the outer edge of a circular fountain in a park. The duck is 2 feet from the center of the fountain and swimming at a constant speed in a counter-clockwise direction. There is a sidewalk running north-south that passes 3 feet away from the fountain, as shown in the diagram below (which may not be drawn to scale). The duck starts at point A that is closest to the sidewalk. After 4 seconds, the duck is at the point B.

a. [2 points] How long does it take for the duck to make one full lap around the fountain? Include units.
Solution: $4 \pi / 3$ is $2 / 3$ of one full rotation, so a lap is $4 /(2 / 3)=4 \cdot 3 / 2=6$ seconds.
b. [3 points] How far did the duck travel along the circumference of the fountain between point A and point B ? Give your answer in exact form and include units.

Solution: We know this is an arc with angle $\theta=4 \pi / 3$ and radius is 2 feet, so the corresponding arc length is $r \theta=2 \cdot 4 \pi / 3=8 \pi / 3$.
c. [6 points] Find a function $D(t)$ that gives the (horizontal) distance in feet between the duck and the sidewalk t seconds after the duck starts swimming.

Solution: From part (a), we know that this function will be periodic with period 6 .
If we imagine a coordinate system with the origin at the center of the circle, then the x coordinate of the duck's location is given by $2 \cos (2 \pi / 6 t)$, and so the distance from the sidewalk, at $x=5$, to the duck, is found by taking the difference: $5-2 \cos (2 \pi / 6 t)$.
Another approach would be to note that since the duck is moving in a circle, this distance is a sinusoidal function moving between a minimum of 3 when $t=0$ and a maximum of $3+2+2=7$. This means that the amplitude is 2 and the midline value is 5 , and since the function starts at a minimum, we can use $-\cos (t)$ without a horizontal shift. This gives us $-2 \cos (2 \pi / 6 t)+5$.

