1. [0 points]

a. [4 points] Let \(f(x) \) be an **odd**, periodic function with period 6. Some values for \(f(x) \) are given below.

 \[
 \begin{array}{c|c|c|c|c|c}
 x & -2 & -1 & 0 & 1 & 2 \\
 \hline
 f(x) & -5 & a & b & -3 & 5 \\
 \end{array}
 \]

 Find the following, or write **nei** if there is not enough information provided to do so:

 i. \(a = \) **3**

 ii. \(b = \) **0**

 iii. \(f(4) = \) **5**

 iv. \(f(f(2)) = \) **-3**

b. [4 points] Suppose that \(h(x) \) is an **even**, periodic function with period 4, amplitude 7, and midline \(y = -2 \). Define

 \[j(x) = -3h \left(\frac{1}{2} x \right). \]

 Is \(j(x) \) even, odd, or neither? Circle the one correct answer.

 [EVEN] [ODD] [NEITHER]

 Find the period, amplitude, and midline of \(j(x) \):

 Period: **8** Amplitude: **21** Midline: **\(y = 6 \)**

2. [0 points] Consider the diagram shown to the right.

a. [2 points] Find the exact value of another angle \(\theta \), in radians, with \(0 \leq \theta \leq 2\pi \), such that the value of \(\cos(\theta) \) is the same as the value of \(\cos \left(\frac{3\pi}{5} \right) \).

 Answer: \(\theta = \frac{7\pi}{5} \)

 Now suppose that the circle shown is centered at the point \((-2, 1)\) and has radius 7.

b. [4 points] Find the \(x \)- and \(y \)-coordinates of the point \(P \).

 Answer: \((x, y) = \left(3 \cos \left(\frac{7\pi}{5} \right) - 2, 7 \sin \left(\frac{3\pi}{5} \right) + 1 \right) \)

c. [3 points] Find the arclength of the bold, dashed arc going from the point \(P \) counterclockwise to the right-most point of the circle.

 Answer: \(14\pi - 7 \cdot \frac{3\pi}{5} = 7 \cdot \frac{7\pi}{5} \)