1. [0 points]
 a. [4 points] Let \(f(x) \) be an odd, periodic function with period 6. Some values for \(f(x) \) are given below.

 \[
 \begin{array}{c|cccc}
 x & -2 & -1 & 0 & 1 & 2 \\
 \hline
 f(x) & -5 & a & b & -3 & 5 \\
 \end{array}
 \]

 Find the following, or write nei if there is not enough information provided to do so:

 i. \(a = 3 \)

 ii. \(b = 0 \)

 iii. \(f(4) = 5 \)

 iv. \(f(f(2)) = -3 \)

 b. [4 points] Suppose that \(h(x) \) is an even, periodic function with period 4, amplitude 7, and midline \(y = -2 \). Define

 \[
 j(x) = -3h\left(\frac{1}{2}x\right).
 \]

 Is \(j(x) \) even, odd, or neither? Circle the one correct answer.

 [EVEN] [ODD] [NEITHER]

 Find the period, amplitude, and midline of \(j(x) \):

 Period: 8 \] Amplitude: 21 \] Midline: y = 6 \]

2. [0 points] Consider the diagram shown to the right.

 a. [2 points] Find the exact value of another angle \(\theta \), in radians, with 0 \(\leq \theta \leq 2\pi \), such that the value of \(\cos(\theta) \) is the same as the value of \(\cos\left(\frac{3\pi}{5}\right) \).

 Answer: \(\theta = 7\pi/5 \)

 Now suppose that the circle shown is centered at the point \((-2, 1)\) and has radius 7.

 b. [4 points] Find the \(x \)- and \(y \)-coordinates of the point \(P \).

 Answer: \((x, y) = (3\cos(7\pi/5) - 2, 7\sin(3\pi/5) + 1) \)

 c. [3 points] Find the arclength of the bold, dashed arc going from the point \(P \) counterclockwise to the right-most point of the circle.

 Answer: \(14\pi - 7\cdot3\pi/5 = 7\cdot7\pi/5 \)