7. [6 points] Consider the piecewise-defined function $k(x)$ given below. A portion of the graph of $k(x)$ is also shown for reference.

$$
k(x)=\left\{\begin{array}{ll}
3 e^{x-1}+5 & x<1 \\
3 \ln (x)+8 & x \geq 1
\end{array} .\right.
$$

Find a formula for $x=k^{-1}(y)$. Be sure to show your work.
Solution: We set the first piece equal to y and solve for x :

$$
\begin{gathered}
3 e^{x-1}+5=y \\
e^{x-1}=\frac{y-5}{3} \\
x-1=\ln \left(\frac{y-5}{3}\right) \\
x=\ln \left(\frac{y-5}{3}\right)+1 .
\end{gathered}
$$

To find where this piece of the inverse function will apply, we look at the output values for $k(x)$ for $x<1$, which is $5<y<8$.
Now we set the second piece equal to y and solve for x :

$$
\begin{gathered}
3 \ln (x)+8=y \\
\ln (x)=\frac{y-8}{3} \\
x=e^{(y-8) / 3} .
\end{gathered}
$$

To find where this piece of the inverse function will apply, we look at the output values for $k(x)$ for $x \geq 1$, which is $y \geq 8$.
Answer: $k^{-1}(y)= \begin{cases}\frac{\ln \left(\frac{y-5}{3}\right)+1}{} & \text { for } \frac{5<y<8}{} \\ \frac{e^{(y-8) / 3}}{} & \text { for } \\ \frac{8 \leq y}{}\end{cases}$

