6. [7 points] The Go Blue Zoo breeds its own insect populations for feeding some of the birds and reptiles. However, a virus infected the cricket breeding program on January 1, 2023. The cricket population started at $1,000,000$ crickets, but decreased by 15% per week once the colony was infected.
a. [3 points] How many weeks did it take for the population to decrease by 60% ? Show all work. Give your answer in exact form, or accurate to at least two decimal places.

Solution:

We need to solve the following equation for t :

$$
400,000=1,000,000(0.85)^{t}
$$

This simplifies to:

$$
0.4=0.85^{t}
$$

Taking \log of both sides we get

$$
\log (0.4)=\log \left(0.85^{t}\right)
$$

And then applying log rules we get:

$$
\log (0.4)=t \log (0.85)
$$

Finally, isolating t using division we get:

$$
\frac{\log (0.4)}{\log (0.85)}=t
$$

$\frac{\log (0.4)}{\log (0.85)} \quad$ weeks
b. [2 points] By what percentage did the cricket population decrease for each day? Show all work. Give your answer in exact form, or accurate to at least two decimal places.

Solution: One way to think about this problem is to think about solving for an unknown daily decay factor d that satisfies $d^{7}=0.85$. That is, a daily decay factor, when applied seven days in a row, should be equivalent to 0.85 . If we solve for d we get

$$
d=0.85^{\frac{1}{7}}
$$

But that tells us the daily decay factor. To find out the percent decease per day we need to compute $100 \times\left(1-0.85^{\frac{1}{7}}\right)$.
Note that it's tempting to use the known formula $r=b-1$. That would, correctly, give us $100 \times\left(0.85^{\frac{1}{7}}-1\right)$ as a precent change. However, that would give us the rate as a negative percent (because it's decaying). That's already captured in the fact that we're using the word "decay", so we want to make sure to give that as a positive number. That is, we wouldn't say something "decays by -5% daily".

Decreases by $\quad 100 \times\left(1-0.85^{\frac{1}{7}}\right) \quad \%$ per day.
c. [2 points] If the population instead decayed at a continuous rate of 15% per week, by what non-continuous percentage would it decrease in one week? Show all work. Give your answer in exact form, or accurate to at least two decimal places.

Solution: Similar to part (b), we need to find a decay factor, and then convert that to a percent change. In this case, if our continuous decay rate is 15%, then our growth (or decay) factor is $b=e^{-0.15}$. So our decay rate is

$$
100 \times\left(1-e^{-0.15}\right)
$$

Decreases by $100 \times\left(1-e^{-0.15}\right) \quad \%$ per week.

