1. [10 points] The function A(x) has domain $(-\infty, \infty)$, is <u>odd</u>, and is periodic with period 8. Some values of A(x) are given in the table below as well as a formula for the function B(x).

x					3
A(x)	0	3	1	-2	$B(x) = 7\log(x^2) - 4$

- **a**. [6 points] Find each of the following values. Give your answers in exact form or rounded to 3 decimal places. Or, if there is not enough information to find a value, write NEI, or if the value does not exist, write DNE.
 - i. *A*(0) = _____
 - ii. *A*(2) = _____
 - iii. *A*(6) = _____
 - iv. A(25) = _____
 - v. *B*(*A*(3)) = _____
 - vi. *A*(*B*(1)) = _____

Suppose that C(x) is a different periodic function with amplitude 7 and a maximum of 11. The period of C(x) is also 8.

- b. [2 points] Find each of the following, or if there is not enough information, write NEI.
 - i. the midline of C(x): y =_____
 - ii. the minimum of C(x): _____
- c. [2 points] Must the function A(x) + C(x) also be periodic? Circle your answer, and then briefly explain.

Explanation: