- **3**. [11 points] No work or explanation is required on this page.
 - a. [4 points] Determine which, if any, of the functions listed below satisfy ALL of the following:
 - It has a zero at x = -5.
 - Its long-run behavior satisfies $y \to -\infty$ as $x \to \infty$.
 - Its long-run behavior satisfies $y \to -\infty$ as $x \to -\infty$.

(Circle all of the functions that satisfy all three conditions, if there are any; otherwise, circle NONE OF THESE.)

- i. $y = -4(x-5)(x-1)^2(x+2)$ ii. $y = 2(x+5)(x+1)^2(x-2)^2$ iii. $y = -4(x+5)(x+1)^2(x-2)$ iv. $y = \frac{-4(x-5)(x+1)}{x+5}$ v. $y = \frac{-4(x-5)(x-1)}{x^2+25}$ vi. $y = \frac{-2(x+5)(x-5)(x-2)}{x^2+25}$
- **b.** [3 points] Which, if any, of the following functions have y = 2 as a horizontal asymptote? *Circle your answer(s).*

i.
$$y = \frac{6x^4 - 5x^2 + 3}{3x^4 + 2x - 1}$$

ii. $y = \frac{2e^x + x^2}{2 + e^x}$
ii. $y = \frac{(2x - 1)(x + 3)(x - 5)}{(x + 1)(x - 4)}$
iv. $y = \frac{2\ln x + x}{\ln x + 3}$

c. [4 points] Data for a function g(s) is given in the following table.

s	-4	-2	-1	1	3
g(s)	13	5	2	-2	-4

For each property listed below, determine whether g(s) could have that property on the entire domain [-4,3]. (Circle each term that *could* describe g(s), if there are any; otherwise, circle NONE OF THESE.)

vi. AN EVEN FUNCTION

ii.	DECREASING	vii.	AN INVERTIBLE FUNCTION
iii.	CONCAVE UP	viii.	A LINEAR FUNCTION
iv.	CONCAVE DOWN	ix.	AN EXPONENTIAL FUNCTION
v.	AN ODD FUNCTION	x.	None of these

i. INCREASING