3. [11 points] No work or explanation is required on this page.
a. [4 points] Determine which, if any, of the functions listed below satisfy ALL of the following:

- It has a zero at $x=-5$.
- Its long-run behavior satisfies $y \rightarrow-\infty$ as $x \rightarrow \infty$.
- Its long-run behavior satisfies $y \rightarrow-\infty$ as $x \rightarrow-\infty$.
(Circle all of the functions that satisfy all three conditions, if there are any; otherwise, circle None of THESE.)
i. $y=-4(x-5)(x-1)^{2}(x+2)$
v. $y=\frac{-4(x+5)(x+1)^{2}(x-5)}{x^{2}+25}$
ii. $y=2(x+5)(x+1)^{2}(x-2)^{2}$
iii. $y=-4(x+5)(x+1)^{2}(x-2)$
vi. $y=\frac{-2(x+5)(x-5)(x-2)}{x^{2}+25}$
iv. $y=\frac{-4(x-5)(x+1)}{x+5}$
vii. None of these
b. [3 points] Which, if any, of the following functions have $y=2$ as a horizontal asymptote? Circle your answer(s).
i. $y=\frac{6 x^{4}-5 x^{2}+3}{3 x^{4}+2 x-1}$
iii. $y=\frac{2 e^{x}+x^{2}}{2+e^{x}}$
ii. $y=\frac{(2 x-1)(x+3)(x-5)}{(x+1)(x-4)}$
iv. $y=\frac{2 \ln x+x}{\ln x+3}$

v. None of these

c. [4 points] Data for a function $g(s)$ is given in the following table.

s	-4	-2	-1	1	3
$g(s)$	13	5	2	-2	-4

For each property listed below, determine whether $g(s)$ could have that property on the entire domain $[-4,3]$. (Circle each term that could describe $g(s)$, if there are any; otherwise, circle None of These.)
i. INCREASING
ii. DECREASING
iii. CONCAVE UP
iv. CONCAVE DOWN
v. AN ODD FUNCTION

vi. AN EVEN FUNCTION

vii. AN INVERTIBLE FUNCTION
viii. A LINEAR FUNCTION
ix. AN EXPONENTIAL FUNCTION
x. NONE OF THESE

