5. [10 points]
a. [2 points] Consider the function $P(t)$ defined by

$$
P(t)= \begin{cases}\frac{70 t(t-6)}{(t-10(t+2)} & \text { if } 0 \leq t \leq 5 \\ 2+5 e^{5-t} & \text { if } t>5\end{cases}
$$

Evaluate $P(5)$ and $P(P(5))$.
$P(5)=$ \qquad

$$
P(P(5))=
$$

\qquad
b. [4 points] Below, you are given a table with some data about two functions: $f(t)$ and $h(t)$. You are also given information about some transformations and combinations of these functions. Fill in the missing entries in the table. You may assume $f(t)$ and $h(t)$ are invertible functions. No work or explanation is required.

t	0	1	2	3
$f(t)$	2	4	5	9
$h(t)$	3	8		7
$f(h(t))$		6	4	11
$f^{-1}(t)$	12	11		10
$f(t+3)$		7	8	12

c. [4 points] Suppose $g(x)$ is a power function such that $g(1)=3$ and $g(5)=6$. Find a formula for $g(x)$ in terms of x. Give your answer in exact form.

$$
g(x)=
$$

\qquad

