3. [11 points] No work or explanation is required on this page.
 a. [4 points] Determine which, if any, of the functions listed below satisfy all of the following:
 • It has a zero at \(x = -5 \).
 • Its long-run behavior satisfies \(y \rightarrow -\infty \) as \(x \rightarrow \infty \).
 • Its long-run behavior satisfies \(y \rightarrow -\infty \) as \(x \rightarrow -\infty \).
 (Circle all of the functions that satisfy all three conditions, if there are any; otherwise, circle None of these.)
 i. \(y = -4(x - 5)(x - 1)^2(x + 2) \)
 ii. \(y = 2(x + 5)(x + 1)^2(x - 2)^2 \)
 iii. \(y = -4(x + 5)(x + 1)^2(x - 2) \)
 iv. \(y = -4(x - 5)(x + 1) \)
 v. \(y = -4(x + 5)(x + 1)^2(x - 5) \)
 vi. \(y = -2(x + 5)(x - 5)(x - 2) \)
 vii. None of these

 b. [3 points] Which, if any, of the following functions have \(y = 2 \) as a horizontal asymptote? Circle your answer(s).
 i. \(y = \frac{6x^4 - 5x^2 + 3}{3x^4 + 2x - 1} \)
 ii. \(y = \frac{(2x - 1)(x + 3)(x - 5)}{(x + 1)(x - 4)} \)
 iii. \(y = \frac{2e^x + x^2}{2 + e^x} \)
 iv. \(y = \frac{2 \ln x + x}{\ln x + 3} \)
 v. None of these

 c. [4 points] Data for a function \(g(s) \) is given in the following table.
 \[
 \begin{array}{c|cccccc}
 s & -4 & -2 & -1 & 1 & 3 \\
 \hline
 g(s) & 13 & 5 & 2 & -2 & -4 \\
 \end{array}
 \]
 For each property listed below, determine whether \(g(s) \) could have that property on the entire domain \([-4, 3]\). (Circle each term that could describe \(g(s) \), if there are any; otherwise, circle None of these.)
 i. INCREASING
 ii. DECREASING
 iii. CONCAVE UP
 iv. CONCAVE DOWN
 v. AN ODD FUNCTION
 vi. AN EVEN FUNCTION
 vii. AN INVERTIBLE FUNCTION
 viii. A LINEAR FUNCTION
 ix. AN EXPONENTIAL FUNCTION
 x. None of these