4. [12 points]
a. [7 points]

The average temperature, T, in degrees Celsius, for the city of Forks, Washington, can be modeled by the sinusoidal function $F(m)$, where m is measured in months after January 1 (so $m=0$ represents January 1). A portion of the graph of $T=F(m)$ is shown on the right.

Find the period, amplitude, midline, and a formula for the sinusoidal function $F(m)$ shown above. (Include units for the period and amplitude.)

Period:
12 months

Amplitude: $6.1^{\circ} \mathrm{C}$

Midline: \qquad
Formula: $F(m)=\underline{-6.1 \cos \left(\frac{\pi}{6} m\right)+10.5 \text { (many possible answers) }}$
b. [5 points]

Suppose the chance of significant cloud cover in Seattle on day t of the year is $D \%$. D can be approximated by the function $C(t)=23 \cos (0.0172 t)+53$. A portion of the graph of $D=C(t)$ is shown to the right. A family in Forks wants to visit Seattle when the chance of significant cloud cover is at least 60%. Find All solutions to the equation $C(t)=60$ for $0 \leq t \leq 365$.

For full credit, you should solve this problem algebraically and show each step clearly.
Your answer(s) should either be in exact form or be accurate to at least 2 decimal places.
Solution: Using the line $D=60$ in the graph above, we see that there are two solutions for $0 \leq t \leq 365$ (labeled a and b above). By symmetry, we see that $b=365-a$. Solving the equation $23 \cos (0.0172 t)+53=60$ we find $23 \cos (0.0172 t)=7$ so $\cos (0.0172 t)=$ $\frac{7}{23}$. So one solution is given by $0.0172 t=\cos ^{-1}\left(\frac{7}{23}\right)$, i.e. $t=\frac{\cos ^{-1}\left(\frac{7}{23}\right)}{0.0172} \approx 73.346$. This is the solution a shown in the graph. So, the two solutions are $a=\frac{\cos ^{-1}\left(\frac{7}{23}\right)}{0.0172} \approx 73.346$ and $b=365-\frac{\cos ^{-1}\left(\frac{7}{33}\right)}{0.0172} \approx 291.654$.

Answer(s): $\frac{\frac{\cos ^{-1}\left(\frac{7}{23}\right)}{0.0172}(\approx 73.346) \text { and } 365-\frac{\cos ^{-1}\left(\frac{7}{23}\right)}{0.0172}(\approx 291.654)}{}$

