5. [10 points]
a. [2 points] Consider the function $P(t)$ defined by

$$
P(t)= \begin{cases}\frac{70 t(t-6)}{(t-10)(t+2)} & \text { if } 0 \leq t \leq 5 \\ 2+5 e^{5-t} & \text { if } t>5\end{cases}
$$

Evaluate $P(5)$ and $P(P(5))$.
Solution: Since $5 \leq 5$, we use the first part of the formula to find $P(5)$.
So $P(5)=\frac{70(5)(5-6)}{(5-10)(5+2)}=10$. Then $P(P(5))=P(10)=2+5 e^{5-10}=2+5 e^{-5}$. (Note that we use the second part of the formula for $P(t)$ to compute $P(10)$ since $10>5$.)
\qquad

$$
P(P(5))=\frac{2+5 e^{-5}}{}
$$

b. [4 points] Below, you are given a table with some data about two functions: $f(t)$ and $h(t)$. You are also given information about some transformations and combinations of these functions. Fill in the missing entries in the table. You may assume $f(t)$ and $h(t)$ are invertible functions. No work or explanation is required.

t	0	1	2	3
$f(t)$	2	4	5	9
$h(t)$	3	8	$\boxed{1}$	7
$f(h(t))$	9	6	4	11
$f^{-1}(t)$	12	11	0	10
$f(t+3)$	9	7	8	12

c. [4 points] Suppose $g(x)$ is a power function such that $g(1)=3$ and $g(5)=6$.

Find a formula for $g(x)$ in terms of x. Give your answer in exact form.
Solution: Since $g(x)$ is a power function, it can be written in the form $g(x)=k x^{p}$ for some constants k and p.
Using the given data, we have $g(1)=3$, so $3=k\left(1^{p}\right)$ and thus $3=k$. To find p, we use the fact that $g(5)=6$ and find $6=3\left(5^{p}\right)$, so $2=5^{p}$. Taking the natural \log of both sides of this equation, we see that $\ln 2=p \ln 5$ so $\ln 2 / \ln 5=p$. Thus a formula for $g(x)$ is $g(x)=3 x^{\ln 2 / \ln 5}$.

$$
g(x)=\quad 3 x^{\ln 2 / \ln 5}
$$

