6. [12 points] Remember to show your work carefully. All numbers appearing in your answers should either be in exact form or be accurate to at least 3 decimal places.

Authorities in Volterra, Italy noticed an increase in the sales of extra-strength dental floss at supermarkets in the city during the early part of the year 2010. Let $D=p(t)$ denote the quantity of extra-strength dental floss, in meters, sold in Volterra on day t of 2010 (where $t=1$ represents January 1). We are told that $p(t)$ is an exponential function.
a. [5 points] 400 meters of extra-strength dental floss were sold in Volterra on January 7, and 600 meters of extra-strength dental floss were sold on January 23. Find a formula for $p(t)$ in terms of t.

Solution: Since $p(t)$ is exponential, there are constants a and b so that $p(t)=a b^{t}$. The information provided tells us that $p(7)=400$ and $p(23)=600$, so $400=a b^{7}$ and $600=a b^{23}$. Dividing, we see that $\frac{600}{400}=\frac{a b^{23}}{a b^{7}}$ so $1.5=b^{16}$. Thus $b=\sqrt[16]{1.5} \approx 1.026$.
To find a, we use the value of b we just found and the equation $400=a b^{7}$ to see that $400=a(1.5)^{7 / 16}$ so $a=400\left(1.5^{-7 / 16}\right) \approx 334.981$. Hence a formula for $p(t)$ is $p(t)=400\left(1.5^{-7 / 16}\right)(\sqrt[16]{1.5})^{t}=400\left(1.5^{(t-7) / 16}\right) \approx 334.981(1.026)^{t}$.

$$
p(t)=\frac{400\left(1.5^{-7 / 16}\right)(\sqrt[16]{1.5})^{t}=400\left(1.5^{(t-7) / 16}\right) \approx 334.981(1.026)^{t}}{}
$$

b. [3 points] How long does it take for the quantity of extra-strength dental floss sold each day to double?
Solution: With a and b as in part (a), we want to find t so that $p(t)=2 p(0)$, i.e. so that $a b^{t}=2 a$ or $b^{t}=2$. Using the natural logarithm, we see that $t \ln b=\ln 2$ so $t=\ln 2 / \ln b=\ln 2 / \ln (\sqrt[16]{1.5})=16 \ln 2 / \ln 1.5 \approx 27.352$. Hence the quantity of extrastrength dental floss sold each day doubles in $16 \ln 2 / \ln 1.5$ (just over 27) days.

Answer: $\quad \frac{16 \ln 2}{\ln 1.5}$ days
c. [4 points] Sales of flea shampoo have also been increasing. If $F=q(t)$ is the quantity of flea shampoo, in grams, sold in Volterra on day t of 2010, then $q(t)=\ln (t+1)+65$. Find a formula for $q^{-1}(F)$ in terms of F.

$$
\begin{aligned}
& \text { Solution: We solve for } t \text { in the formula } F=\ln (t+1)+65 \text { and find } \\
& \qquad \begin{aligned}
F & =\ln (t+1)+65 \\
F-65 & =\ln (t+1) \\
e^{F-65} & =t+1 \\
e^{F-65}-1 & =t
\end{aligned} \\
& \text { So } q^{-1}(F)=e^{F-65}-1 \text {. }
\end{aligned}
$$

