7. [8 points] Consider the three functions described below.

- The local animal shelter has a number of dogs available that people can adopt for free. The weight of a dog at the animal shelter is a function of its length. Let \(f(L) \) be the weight, in pounds, of a dog at the animal shelter that is \(L \) inches long.

- There is also a dog washing service. The amount they charge to wash a dog is a function of the dog’s weight. Let \(g(W) \) be the price, in dollars, they charge to wash a dog that weighs \(W \) pounds.

- The amount of food a dog eats is a function of the dog’s weight. Let \(h(W) \) be the cost, in dollars, of a month’s supply of food for a dog that weighs \(W \) pounds.

Assume that \(f \), \(g \), and \(h \) are invertible functions. Fill in each blank below with an appropriate expression. The expression may involve one or more of the functions defined above.

Example: If you have a dog that weighs 29 pounds, it will cost \(h(29) \) dollars to buy a month’s supply of food for your dog.

a. [2 points] You are considering adopting a dog that is 34 inches long. That dog weighs \(f(34) \) pounds.

b. [2 points] You have a dog that weighs 25 pounds. If you get your dog washed, and then buy a month’s supply of food for it, you will spend a total of \(g(25) + h(25) \) dollars.

c. [2 points] For $30, you can buy a month’s supply of food for a dog that weighs \(h^{-1}(30) \) pounds.

d. [2 points] If you adopt a dog that is 18 inches long and want to get it washed, it will cost you \(g(f(18)) \) dollars.