8. [12 points] The graphs of two polynomials $a(x)$ (dashed line) and $b(x)$ (solid line) are shown below. Assume all the key features of the graphs are shown. Note: No work or explanation is required for parts (a)-(c). However, partial credit may be awarded for work shown.

a. [2 points] Evaluate $b(a(2))$.

Solution: From the graph, we see that $b(a(2))=b(0)=-3$.
b. [4 points] Find the zero(s) and vertical asymptote(s) of the function $\frac{a(x)}{b(x)}$.

Solution: Note that $a(x)$ and $b(x)$ have no common zeros.
The zeros of $\frac{a(x)}{b(x)}$ are the zeros of the numerator $a(x)$, i.e. $x=-3,0$, and 2 .
The vertical asymptotes of $\frac{a(x)}{b(x)}$ are given by the zeros of the denominator $b(x)$, so the vertical asymptotes are $x=-4, x=-1$, and $x=3$.

Zero(s): $\quad x=-3,0,2 \quad$ Vertical asymptote(s): $\quad x=-4, x=-1, x=3$
c. [2 points] Estimate the horizontal intercept(s) of the function $a(x)-b(x)$.

Solution: The horizontal intercepts of the function $a(x)-b(x)$ are given by the two points of intersection of the graphs of $y=a(x)$ and $y=b(x)$. One of these occurs at $x \approx-2.7$ and the other at $x \approx 2.7$.

Horizontal intercept(s): $\quad x \approx-2.7,2.7$

d. [4 points] Find a possible formula for the polynomial $a(x)$. You do not need to simplify your answer. Show your work.
Solution: Note that the long-run behavior of the graph shows that the degree of $a(x)$ is even, and since the graph "turns" three times, the degree must be at least four.
The polynomial $a(x)$ has zeros at $x=-3$ and $x=0$ and a zero of even multiplicity at $x=$ 2. A possible formula for $a(x)$ is then $a(x)=k(x+3)(x)(x-2)^{2}$. Since the point $(-2,8)$ is on the graph of $y=a(x)$, we see that $a(-2)=8$, so $8=k(-2+3)(-2)(-2-2)^{2}$. Thus $8=k(-32)$ so $k=-1 / 4$. Hence a possible formula for $a(x)$ is $a(x)=-\frac{1}{4} x(x+3)(x-2)^{2}$.

$$
a(x)=\quad-\frac{1}{4} x(x+3)(x-2)^{2}
$$

