11. [8 points] Every morning, a student gets a cup of coffee from a local coffee shop and then sits down to work. Today the coffee was served at a temperature of $185^{\circ} \mathrm{F}$. Let $C(t)$ be the temperature, in degrees Fahrenheit, of the cup of coffee t hours after it was poured today, and let $D(t)=C(t)-70$.
Throughout this problem, show your work carefully and give all answers in exact form or accurate to at least three decimal places.
a. [1 point] Find $D(0)$.

Solution: $\quad D(0)=C(0)-70=185-70-115$.
Answer: $D(0)=$ \qquad
b. [2 points] $D(t)$ is an exponential function with a continuous hourly decay rate of 80%. Find a formula for $D(t)$ and then find a formula for $C(t)$
Solution: In part (a), we found that the initial value of D is 115 , so $D(t)=115 e^{-0.8 t}$. Since $D(t)=C(t)-70$ we have $C(t)=70+D(t)=70+115 e^{-0.8 t}$.

$$
D(t)=\frac{115 e^{-0.8 t}}{C(t)=} \quad 70+115 e^{-0.8 t}
$$

c. [1 point] By what percent does $D(t)$ decrease each hour?

Solution: The hourly decay factor is $b=e^{-0.8} \approx 0.44933$ so $D(t)$ decreases by about 55.067% per hour.

Answer: \qquad
d. [2 points] By how many degrees did the temperature of the cup of coffee decrease within the first 30 minutes after it was poured?
Solution: The temperature, in degrees Fahrenheit, of the coffee when it was poured was $C(0)=185$ and its temperature (in ${ }^{\circ} \mathrm{F}$) 30 minutes after it was poured was

$$
C(0.5)=70+115 e^{-0.8(0.5)} \approx 147.09 .
$$

So the temperature of the coffee decreased by

$$
C(0)-C(0.5)=185-\left(70+115 e^{-0.8(0.5)}\right) \approx 37.91^{\circ} \mathrm{F}
$$

within the first 30 minutes after it was poured.
Answer: \quad by about $37.91^{\circ} \mathbf{F}$
e. [2 points] Find and interpret, in the context of this problem, any horizontal asymptotes of the function $C(t)$.
Solution: $D(t)$ is an exponentially decreasing positive function so it has horizontal asymptote $y=0(D(t) \rightarrow 0$ as $t \rightarrow \infty)$. $C(t)=D(t)+70$ so its graph is obtained from the graph of $D(t)$ by shifting up 70 units. Hence the graph of $y=C(t)$ has horizontal asymptote $y=70$ (and $C(t) \rightarrow 70$ as $t \rightarrow \infty$).
Interpretation: As time passes, the temperature of the coffee approaches $70^{\circ} \mathrm{F}$. (This is probably the air temperature in the coffee shop.)

