12. [8 points] In preparation for an upcoming party, you are deciding where to buy a large supply of candy. You have investigated two sources. Define functions C and T as follows.

- It costs $C(p)$ dollars to buy p pounds of candy from the Candy Company.
- For d dollars, you can buy $T(d)$ pounds of candy from Tasty Sweets.

Assume that both C and T are invertible.
a. [1 point] Write an equation that expresses the fact that it costs $\$ 25$ to buy 10 pounds of candy from Tasty Sweets.

$$
\text { Answer: } \quad T(25)=10\left(\text { or } T^{-1}(10)=25\right)
$$

b. [1 point] Write an expression that gives the cost of purchasing k pounds of candy from Tasty Sweets.

Answer: $T^{-1}(k)$
c. [2 points] Write an equation that expresses the fact that it costs $\$ 10$ more to buy 20 pounds of candy from the Candy Company than to buy 15 pounds of candy from the Candy Company.

$$
\text { Answer: } \quad C(20)=C(15)+10
$$

d. [2 points] The Candy Company claims that purchasing twice as much candy always costs less than twice as much. Express this statement as an inequality involving C and p.
Answer: $C(2 p)<2 C(p)$
e. [2 points] Interpret the meaning of the equation $T(C(15))=20$ in the context of this problem. (Use a complete sentence.)
Solution: For the price of buying 15 pounds of candy from the Candy Company, you can buy 20 pounds of candy from Tasty Sweets.
Alternative: It costs the same amount of money to buy 20 pounds of candy from Tasty Sweets as it does to buy 15 pounds of candy from the Candy Company.
13. [5 points] (Your score on this problem was determined when you took the LA Post-Test.)

