1. [5 points] For each of the statements below, circle "True" if the statement is definitely true. Otherwise, circle "False". You do not need to show any work for this problem.
a. [1 point] If a function has more than one zero, then the function is not invertible.

True False
b. [1 point] If $x>1$, then $100 x^{100000}>e^{0.0001 x}$.

True
False
c. [1 point] If $h(t)=\ln (t)$ then $h^{-1}(t)=\frac{1}{\ln (t)}$.

True
False
d. [1 point] If a function is concave up, then the function is increasing.

True
False
e. [1 point] If $f(x)$ and $g(x)$ are both even functions, then the function $f(g(x))$ is also an even function.

True False
2. [6 points] Solve each of the equations below. Show your work step-by-step and write the solutions in exact form in the answer blanks provided.
a. [3 points] $\quad 5 e^{2 t+7}=3\left(4^{t}\right)$

Solution: We first divide both sides of this equation by 5 to find $e^{2 t+7}=0.6\left(4^{t}\right)$. Then we use logarithms to find t.

$$
\begin{aligned}
\ln \left(e^{2 t+7}\right) & =\ln \left(0.6\left(4^{t}\right)\right) \\
2 t+7 & =\ln (0.6)+\ln \left(4^{t}\right)=\ln (0.6)+t \ln (4) \\
2 t-t \ln (4) & =\ln (0.6)-7 \\
t(2-\ln (4)) & =\ln (0.6)-7 \text { so } t=\frac{\ln (0.6)-7}{2-\ln (4)}
\end{aligned}
$$

Answer: $t=$

$$
\frac{\ln (0.6)-7}{2-\ln (4)}
$$

b. $[3$ points $] \quad \log (w)+\log (w+3)=1$

Solution: We apply a basic property of logarithms and then use the definition or the logarithm (or exponentiate) to solve for w.

$$
\begin{aligned}
\log (w)+\log (w+3) & =1 \\
\log (w(w+3)) & =1 \\
w(w+3) & =10^{1} \\
w^{2}+3 w & =10 \\
w^{2}+3 w-10 & =0 \\
(w-5)(w+2) & =0 \\
w=5 & \text { or } w=-2
\end{aligned}
$$

However, note that $w=-2$ is not a solution to the original equation because -2 is not in the domain of $\log w$. Hence the only solution is $w=5$.

Answer: $w=$

