5. [9 points] A diver jumps up off of a diving board into a swimming pool below. Until the moment the diver enters the water, his height above the water (measured in feet) t seconds after his feet leave the diving board is $h(t)=-16 t^{2}+8 t+10$.
Throughout this problem, remember to show your work and reasoning.
Give your answers in exact form or accurate to at least three decimal places.
a. [3 points] Use the method of completing the square to rewrite the formula for $h(t)$ in vertex form. (Carefully show your work step-by-step.)
Solution: Applying the method of completing the square, we have

$$
\begin{aligned}
h(t) & =-16 t^{2}+8 t+10=-16\left(t^{2}-\frac{1}{2} t\right)+10 \\
& =-16\left(t^{2}-\frac{1}{2} t+\left(-\frac{1}{4}\right)^{2}-\left(-\frac{1}{4}\right)^{2}\right)+10=-16\left(\left(t-\frac{1}{4}\right)^{2}-\frac{1}{16}\right)+10 \\
& =-16\left(t-\frac{1}{4}\right)^{2}+1+10=-16\left(t-\frac{1}{4}\right)^{2}+11 \\
& \text { Answer: } h(t)=\frac{-16\left(t-\frac{1}{4}\right)^{2}+11}{}
\end{aligned}
$$

b. [2 points] After how many seconds does the diver reach his maximum height above the pool? What is that maximum height?
Solution: Based on the vertex form found in part (a), the vertex of the graph of $h(t)$ (which is a parabola) is $(1 / 4,11)$. Since the leading coefficient is negative, the parabola opens downward and this vertex gives the maximum of $h(t)$.
After 0.25 seconds, the diver reaches his maximum height of \qquad feet.
c. [2 points] After how many seconds does the diver enter the water?

Solution: We must solve the equation $h(t)=0$. Using our vertex form from part (a), we have

$$
\begin{gathered}
-16\left(t-\frac{1}{4}\right)^{2}+11=0 \quad \text { so } \quad-16\left(t-\frac{1}{4}\right)^{2}=-11 \quad \text { and } \quad\left(t-\frac{1}{4}\right)^{2}=\frac{11}{16} . \\
\text { Hence } t-\frac{1}{4}= \pm \sqrt{\frac{11}{16}}= \pm \frac{\sqrt{11}}{4} \quad \text { so } \quad t=\frac{1 \pm \sqrt{11}}{4} .
\end{gathered}
$$

Note that $\frac{1-\sqrt{11}}{4}<0$ so $\frac{1+\sqrt{11}}{4} \approx 1.0792$ is the solution corresponding to a time after the diver left the diving board. (Alternatively, we could apply the quadratic formula to the original formula for $h(t)$ or use a graphing calculator to approximate the positive zero of $h(t)$.)
The diver enters the water $\frac{\frac{1+\sqrt{11}}{4}}{}$ seconds after his feet leave the diving board.
d. [2 points] In the context of this problem, what are the domain and range of $h(t)$?
(Use either inequalities or interval notation to give your answers.)

$$
\text { Domain: } \quad\left[0, \frac{1+\sqrt{11}}{4}\right]
$$

Range: \qquad

