6. [9 points] The tables below provide data from three functions, f, g, and h. Each of these functions is either a linear function, an exponential function, a sinusoidal function, or a power function. (Note that there may be either zero, one, or more than one function of each type.)

x	-2	-1	1	2
$\mathrm{f}(\mathrm{x})$	12	1.5	-1.5	-12

x	-3	-1	1	3
$\mathrm{~g}(\mathrm{x})$	12	6.5	1	-4.5

x	1	3	5	7
$\mathrm{~h}(\mathrm{x})$	32.4	10.8	3.6	1.2

a. [3 points] What type of function is f ? (Circle ONE answer.)

linear	exponential	sinusoidal

Find a formula for $f(x)$. (Show your work carefully and use exact form.)
Solution: $\quad f(x)$ is a power function so there are constants k and p so that $f(x)=k x^{p}$. Note that $f(x)=-1.5$, so $-1.5=k(1)^{p}=k(1)=k$. So $f(x)=-1.5 x^{p}$. Now $f(2)=-12$ so $-12=-1.5(2)^{p}$, so $8=2^{p}$ and $p=3$. Thus a formula for $f(x)$ is $f(x)=-1.5 x^{3}$.

Answer: $f(x)=$ \qquad
b. [3 points] What type of function is g ? (Circle one answer.)
linear exponential sinusoidal power

Find a formula for $g(x)$. (Show your work carefully and use exact form.)
Solution: We see that $g(x)$ is linear by noting that the average rate of change between each pair of consecutive inputs is constant (-2.75). $g(x)$ is linear with (constant) average rate of change equal to -2.75 . Using point-slope form (with the point $(1,1)$) we find that $g(x)-1=-2.75(x-1)$ so $g(x)=1-2.75(x-1)$. (This reduces to $g(x)=3.75-2.75 x$ in slope-intercept form.)
Answer: $g(x)=$ \qquad

$$
1-2.75(x-1)=3.75-2.75 x
$$

c. [3 points] What type of function is h ? (Circle ONE answer.)

Find a formula for $h(x)$. (Show your work carefully and use exact form.)
Solution: $\quad(*)$ Note that the ratio of consecutive outputs is constant $(1 / 3)$ and the the difference between consecutive inputs is also constant (2).
Hence $h(x)$ appears to be exponential. There are constants a and b so that $h(x)=a b^{x}$.
Using the facts that $h(1)=32.4$ and $h(3)=10.8$ we have $a b=32.4$ and $a b^{3}=10.8$.
Hence, we see that $\frac{a b^{3}}{a b}=\frac{10.8}{32.4}$ so $b^{2}=\frac{1}{3}$. (This is what we had already determined in
$\left(^{*}\right)$ above.) Thus $b=\sqrt{\frac{1}{3}}$ so $a \sqrt{\frac{1}{3}}=32.4$ and $a=\frac{32.4}{\sqrt{\frac{1}{3}}}=32.4 \sqrt{3}$.

Answer: $h(x)=$
$32.4 \sqrt{3}\left(\frac{1}{\sqrt{3}}\right)^{x}=32.4 \sqrt{3}\left(3^{-x / 2}\right)=32.4(3)^{(1-x) / 2}$

