6. [9 points] The tables below provide data from three functions, f, g, and h. Each of these functions is either a *linear* function, an *exponential* function, a *sinusoidal* function, or a *power* function. (Note that there may be either zero, one, or more than one function of each type.)

x	-2	-1	1	2	X	-3	-1	1	3	X	1	3	5	7
f(x)	12	1.5	-1.5	-12	g(x)	12	6.5	1	-4.5	h(x)	32.4	10.8	3.6	1.2

a. [3 points] What type of function is f? (*Circle ONE answer.*)

linear	exponential	sinusoidal	power

Find a formula for f(x). (Show your work carefully and use exact form.)

Solution: f(x) is a power function so there are constants k and p so that $f(x) = kx^p$. Note that f(x) = -1.5, so $-1.5 = k(1)^p = k(1) = k$. So $f(x) = -1.5x^p$. Now f(2) = -12 so $-12 = -1.5(2)^p$, so $8 = 2^p$ and p = 3. Thus a formula for f(x) is $f(x) = -1.5x^3$.

Answer: $f(x) = -1.5x^3$

b. [3 points] What type of function is g? (*Circle* ONE answer.)

linear exponential sinusoidal power

Find a formula for g(x). (Show your work carefully and use exact form.)

Solution: We see that g(x) is linear by noting that the average rate of change between each pair of consecutive inputs is constant (-2.75). g(x) is linear with (constant) average rate of change equal to -2.75. Using point-slope form (with the point (1,1)) we find that g(x) - 1 = -2.75(x - 1) so g(x) = 1 - 2.75(x - 1). (This reduces to g(x) = 3.75 - 2.75xin slope-intercept form.)

Answer: g(x) = 1 - 2.75(x - 1) = 3.75 - 2.75x

c. [3 points] What type of function is *h*? (*Circle* ONE *answer*.)

linear

exponential

sinusoidal

power

Find a formula for h(x). (Show your work carefully and use exact form.)

Solution: (*)Note that the ratio of consecutive outputs is constant (1/3) and the the difference between consecutive inputs is also constant (2). Hence h(x) appears to be exponential. There are constants a and b so that $h(x) = ab^x$. Using the facts that h(1) = 32.4 and h(3) = 10.8 we have ab = 32.4 and $ab^3 = 10.8$. Hence, we see that $\frac{ab^3}{ab} = \frac{10.8}{32.4}$ so $b^2 = \frac{1}{3}$. (This is what we had already determined in (*) above.) Thus $b = \sqrt{\frac{1}{3}}$ so $a\sqrt{\frac{1}{3}} = 32.4$ and $a = \frac{32.4}{\sqrt{\frac{1}{3}}} = 32.4\sqrt{3}$. Answer: $h(x) = \frac{32.4\sqrt{3}\left(\frac{1}{\sqrt{3}}\right)^x = 32.4\sqrt{3}(3^{-x/2}) = 32.4(3)^{(1-x)/2}}{32.4\sqrt{3}\left(\frac{1}{\sqrt{3}}\right)^x}$