7. [8 points] Consider the polynomials and $a(x)=(x+1)\left(x^{2}-6 x+3\right)$ and $b(x)=x\left(3 x^{2}+2\right)$.
a. [3 points] Find all the zeros of $a(x)$ and of $b(x)$.
(Show your work carefully, and give your answers in exact form.)
Solution: To find the zeros of $a(x)$, we solve $a(x)=0$.

$$
\begin{aligned}
a(x) & =0 \\
(x+1)\left(x^{2}-6 x+3\right) & =0 \\
x+1=0 \text { or } x^{2}-6 x+3 & =0 \\
x=-1 \text { or } x & =\frac{6 \pm \sqrt{36-4(3)}}{2} \\
x=-1 \text { or } x & =3 \pm \sqrt{6}
\end{aligned}
$$

Similarly, we solve $b(x)=0$.

$$
\begin{aligned}
b(x) & =0 \\
x\left(3 x^{2}+2\right) & =0 \\
x & =0 \text { or } 3 x^{2}+2=0
\end{aligned}
$$

$3 x^{2}+2=0$ has no real solutions (since $3 x^{2}=-2$ has no real solutions), so the only zero of $b(x)$ is $x=0$.
zero(s) of $a(x)$: $\quad x=-1, x=3+\sqrt{6}, x=3-\sqrt{6}$

$$
\text { zero(s) of } b(x): \quad x=0
$$

b. [5 points] Let $r(x)=\frac{a(x)}{b(x)}$.

Find all intercepts and all horizontal and vertical asymptotes of the graph of $y=r(x)$. If appropriate, write "NONE" in the answer blank provided.
Solution: Since $a(x)$ and $b(x)$ have no common zeros, the x-intercept(s) of the graph of $y=r(x)$ are the zeros of $a(x)$ and the vertical asymptote of the graph of $y=r(x)$ is given by the zero of $b(x)$.
The y-intercept of the graph of $y=r(x)$ is $r(0)=\frac{a(0)}{b(0)}$ which is undefined since $b(0)=0$. To find the horizontal asymptote of $r(x)$, recall that in the long-run, the polynomials $a(x)$ and $b(x)$ behave like their leading terms, which are x^{3} and $3 x^{3}$, respectively. Hence, in the long-run, $r(x)$ behaves like $\frac{x^{3}}{3 x^{3}}=\frac{1}{3}$ so $\lim _{x \rightarrow \infty}=\frac{1}{3}$ and $\lim _{x \rightarrow-\infty}=\frac{1}{3}$. Hence the horizontal asymptote of the graph of $y=r(x)$ is $y=\frac{1}{3}$.

$$
x \text {-intercept(s): } \quad-1,3+\sqrt{6}, \text { and } 3-\sqrt{6}
$$

y-intercept(s): None
horizontal asymptote(s): $\quad y=\frac{1}{3}$
vertical asymptote(s): \qquad

