9. [5 points] Find a formula for one polynomial $p(x)$ that satisfies all of the following conditions.

- The vertical intercept of the graph of $p(x)$ is 7 .
- The graph of $p(x)$ has horizontal intercepts $-1,2$, and 3 (and no others).
- $\lim _{x \rightarrow \infty} p(x)=-\infty$ and $\lim _{x \rightarrow-\infty} p(x)=\infty$.
- The degree of $p(x)$ is at most 6 .

Show your work and reasoning carefully. You might find it helpful to first sketch a graph.
There may be more than one possible answer, but you should give only one answer.

Solution:

A graph showing such a polynomial is shown To find a formula, note that the factored form
below.

of such a polynomial could be

$$
p(x)=a(x+1)^{2}(x-2)(x-3)^{2} .
$$

The vertical intercept is given by $p(0)$ so we use the fact that $p(0)=7$ to determine a. That is

$$
7=p(0)=a(0+1)^{2}(0-2)(-3)^{2}=a(-18),
$$

so $a=-\frac{7}{18}$. Hence a possible formula is $p(x)=-\frac{7}{18}(x+1)^{2}(x-2)(x-3)^{2}$.

Note: Another possibility (corresponding to a double root at $x=3$ rather than at $x=2$) would be $p(x)=-\frac{7}{12}(x+1)^{2}(x-2)^{2}(x-3)$

$$
p(x)=-\frac{7}{18}(x+1)^{2}(x-2)(x-3)^{2} \text { or }-\frac{7}{12}(x+1)^{2}(x-2)^{2}(x-3)
$$

10. [4 points] If $K=G(t)=\frac{e^{t}+3}{7+e^{t}}$ find a formula for $G^{-1}(K)$.

Solution: To find a formula for $G^{-1}(K)$ we need to solve for t in the equation $K=\frac{e^{t}+3}{7+e^{t}}$.

$$
\begin{aligned}
K & =\frac{e^{t}+3}{7+e^{t}} \\
K\left(7+e^{t}\right) & =e^{t}+3 \\
7 K+K e^{t} & =e^{t}+3 \\
K e^{t}-e^{t} & =3-7 K \\
e^{t}(K-1)= & 3-7 K \\
e^{t}= & \frac{3-7 K}{K-1} \\
t= & \ln \left(\frac{3-7 K}{K-1}\right) \\
& \ln \left(\frac{3-7 K}{K-1}\right)
\end{aligned}
$$

