12. [10 points] Consider the functions f, g, and h defined as follows:

$$
f(x)=a+b x \quad g(x)=c x^{d} \quad h(x)=w(1+r)^{x}
$$

for nonzero constants a, b, c, d, r, and w with $r>-1$.
For each of the questions below, circle all the correct answers from among the choices provided, or circle NONE OF THESE if appropriate.
a. [2 points] The graph of which function(s) definitely has at least one horizontal intercept?
$f(x) \quad g(x) \quad h(x) \quad$ NONE OF THESE
b. [2 points] The graph of which function(s) definitely has at least one horizontal asymptote?
$f(x) \quad g(x) \quad h(x) \quad$ NONE OF THESE
c. [2 points] Which function(s) is(are) definitely invertible?
$f(x) \quad g(x) \quad h(x) \quad$ NONE OF THESE
d. [2 points] How many times could the graph of $f(x)$ intersect the graph of $h(x)$?
0
1
2
3
4
more than 4
e. [2 points] Suppose the graph of h is concave up. Which of the following is(are) definitely true?

$$
w>0 \quad w<0 \quad r>0 \quad r<0 \quad \text { NONE OF THESE }
$$

