7. [8 points] Freckles and Comet are cats in the same household. Consider the functions F, C, and D which are defined as follows:

- $F(m)$ is the number of ounces of food that Freckles eats in month m.
- $C(m)$ is the number of ounces of food that Comet eats in month m.
- $D(q)$ is the cost of buying q cans of cat food at a time when there are no sale prices.

Assume that D is invertible.
For each of questions below, circle the one best answer from among the options provided. If none of the options are correct, circle none of these.

Please note: To receive credit, you must clearly circle your choices. (Circle the entire answer. If there is any ambiguity in your answer, you will not receive credit.)
a. [1 point] What is the total number of ounces of food that Freckles and Comet eat in month m ?

$$
D(m)+C(m) \quad F(m)+C(m) \quad F(C(m)) \quad C(F(m)) \quad \text { NONE OF THESE }
$$

b. [2 points] Suppose that there are 3 ounces of food per can. What is the total cost of the food Freckles eats in month 4?

$$
\frac{D(4)}{3} \quad 3 D(4) \quad D(3 F(4)) \quad D\left(\frac{F(4)}{3}\right) \quad \text { NONE OF THESE }
$$

c. [1 point] Let $A(q)$ be the average cost per can of buying q cans of cat food. Which of the following is a formula for $A(q)$?

$$
D^{-1}(q) \quad \frac{q}{D(q)} \quad \frac{F(q)+C(q)}{2} \quad \frac{D(q)}{q} \quad \text { NONE OF THESE }
$$

d. [1 point] When there are no sale prices, how many cans of cat food can be purchased at a time for $\$ 20$?

$$
D(20) \quad D^{-1}(20) \quad 20 D^{-1}(q) \quad \frac{1}{D(20)} \quad \text { NONE OF THESE }
$$

e. [2 points] Suppose that Comet eats at least twice as much food each month as Freckles eats. Which one of the following inequalities most accurately describes this relationship?

$$
C(m) \leq 2 F(m) \quad C(m) \geq 2 F(m) \quad 2 C(m) \leq F(m) \quad 2 C(m) \geq F(m)
$$

f. [1 point] If cat food goes on sale for 40% off its regular price, what is the cost of buying 20 cans of cat food at one time?

$$
0.6 D(20) \quad 1.4 D(20) \quad 0.4 D(20) \quad D(8) \quad \text { NONE OF THESE }
$$

