12. [10 points] Consider the functions f, g, and h defined as follows:

$$
f(x)=a+b x \quad g(x)=c x^{d} \quad h(x)=w(1+r)^{x}
$$

for nonzero constants a, b, c, d, r, and w with $r>-1$.
For each of the questions below, circle all the correct answers from among the choices provided, or circle NONE OF THESE if appropriate.
a. [2 points] The graph of which function(s) definitely has at least one horizontal intercept?
$f(x) \quad h(x) \quad$ NONE OF THESE

Solution: $f(x)$ will always have a horizontal intercept since it is linear with nonzero slope.
If $d<0$, e.g. if $g(x)=10 x^{-1}$, then $g(x)$ does not have a horizontal intercept.
$h(x)$ does not have a horizontal intercept because it is an exponential function and w is nonzero.
b. [2 points] The graph of which function(s) definitely has at least one horizontal asymptote?

$$
f(x) \quad \text { g(x) } \quad h(x) \quad \text { NONE OF THESE }
$$

Solution: $f(x)$ is a linear function with nonzero slope so does not have a horizontal asymptote. If $d>0$, e.g. if $g(x)=10 x^{2}$, then it does not have a horizontal asymptote. $y=h(x)$ is an exponential function so has horizontal asymptote $y=0$.
c. [2 points] Which function(s) is(are) definitely invertible?

Solution: The linear function with nonzero slope, $f(x)$, and the exponential function, $h(x)$ are definitely invertible. (They pass the horizontal line test, for example.)
$g(x)$ may or may not be invertible. For example, if $g(x)=10 x^{2}$, then it is not invertible.
d. [2 points] How many times could the graph of $f(x)$ intersect the graph of $h(x)$?

0	1	2	3	4	more than 4

Solution: A linear function can intersect an exponential function either 0,1 , or 2 times. For example, $y=x+1$ and $y=2(1+3)^{x}$ do not intersect, whereas $y=-x+1$ and $y=2(1+3)^{x}$ intersect exactly once, and $y=x+5$ and $y=2(1+3)^{x}$ intersect exactly two times. (They cannot intersect more than two times due to their long-run behavior.)
e. [2 points] Suppose the graph of h is concave up. Which of the following is(are) definitely true?

$$
w>0 \quad w<0 \quad r>0 \quad r<0 \quad \text { NONE OF THESE }
$$

[^0]That is, whether $-1<r<0$ or $r>0$, if $w>0$, then the graph of h will be concave up whereas if $w<0$, the graph of h will be concave down.

[^0]: Solution: An exponential function is concave up if and only if its initial value is positive.

