- **3.** [10 points] Let G(v) be the number of minutes it takes Goober the gorilla to eat a meal consisting of v pounds of vegetation.
 - a. [2 points] Suppose b and n are positive constants. Give a practical interpretation of the equation $G^{-1}(b) = n$ in the context of this problem. Use a complete sentence and include units.

Solution: It takes Goober b minutes to eat a meal consisting of n pounds of vegetation.

b. [4 points] Suppose that there are positive constants c and d so that a formula for G(v) is given by

$$G(v) = cv^d.$$

If G(2) = 9 and G(3) = 18, find the *exact* values of the constants c and d.

Solution: G(2) = 9 and G(3) = 18, so $c(2)^d = 9$ and $c(3)^d = 18$. Taking ratios, we find $\frac{c(3)^d}{c(2)^d} = \frac{18}{9}$ Using logarithms: $\ln(1.5^d) = \ln(2)$ $\frac{3^d}{2^d} = 2$ $d\ln(1.5) = \ln(2)$ $\left(\frac{3}{2}\right)^d = 2$ $d = \frac{\ln(1.5)}{\ln(2)}$ $1.5^d = 2$

Substituting into the equation $c(2)^d = 9$, we find $c(2)^{\ln(1.5)/\ln(2)} = 9$ so $c = \frac{9}{2^{\ln(1.5)/\ln(2)}}$.

Answers:
$$c =$$
_______ $\frac{9}{2^{\ln(1.5)/\ln(2)}}$ and $d =$ ______ $\frac{\ln(1.5)}{\ln(2)}$

c. [4 points] Suppose that the number of minutes it takes Goober's friend Toober to eat a meal consisting of v pounds of vegetation is m = T(v), which is given by the formula

$$T(v) = q + \frac{\ln(v+2)}{\ln(5)}$$

for some constant q. Find a formula for $T^{-1}(m)$. Show your work carefully. Note that your answer should be in exact form and be given in terms of m and q.

Solution: To find $T^{-1}(m)$, we solve for v in the equation $m = q + \frac{\ln(v+2)}{\ln(5)}$. $m = q + \frac{\ln(v+2)}{\ln(5)}$ Exponentiating: $e^{\ln(5)(m-q)} = v + 2$ $m - q = \frac{\ln(v+2)}{\ln(5)}$ $e^{\ln(5)(m-q)} - 2 = v$ $(\ln(5))(m-q) = \ln(v+2)$ Thus $T^{-1}(m) = e^{\ln(5)(m-q)} - 2$.

Note that $e^{\ln(5)(m-q)} = (e^{\ln(5)})^{m-q} = 5^{m-q}$ so we can simplify to $T^{-1}(m) = 5^{m-q} - 2$.

Answer: $T^{-1}(m) = 5^{m-q} - 2$ (or $e^{\ln(5)(m-q)} - 2$)