3. [10 points] Let $G(v)$ be the number of minutes it takes Goober the gorilla to eat a meal consisting of v pounds of vegetation.
a. [2 points] Suppose b and n are positive constants.

Give a practical interpretation of the equation $G^{-1}(b)=n$ in the context of this problem. Use a complete sentence and include units.
Solution: It takes Goober b minutes to eat a meal consisting of n pounds of vegetation.
b. [4 points] Suppose that there are positive constants c and d so that a formula for $G(v)$ is given by

$$
G(v)=c v^{d} .
$$

If $G(2)=9$ and $G(3)=18$, find the exact values of the constants c and d.
Solution: $\quad G(2)=9$ and $G(3)=18$, so $c(2)^{d}=9$ and $c(3)^{d}=18$. Taking ratios, we find

$$
\begin{array}{rlrl}
\frac{c(3)^{d}}{c(2)^{d}} & =\frac{18}{9} & \text { Using logarithms: } \ln \left(1.5^{d}\right) & =\ln (2) \\
\frac{3^{d}}{2^{d}} & =2 & d \ln (1.5) & =\ln (2) \\
\left(\frac{3}{2}\right)^{d} & =2 & d & =\frac{\ln (1.5)}{\ln (2)} \\
1.5^{d} & =2 &
\end{array}
$$

Substituting into the equation $c(2)^{d}=9$, we find $c(2)^{\ln (1.5) / \ln (2)}=9$ so $c=\frac{9}{2^{\ln (1.5) / \ln (2)}}$.

Answers: $\quad c=\int \frac{9}{2^{\ln (1.5) / \ln (2)}} \quad$ and $\quad d=\frac{\frac{\ln (1.5)}{\ln (2)}}{}$
c. [4 points] Suppose that the number of minutes it takes Goober's friend Toober to eat a meal consisting of v pounds of vegetation is $m=T(v)$, which is given by the formula

$$
T(v)=q+\frac{\ln (v+2)}{\ln (5)}
$$

for some constant q. Find a formula for $T^{-1}(m)$. Show your work carefully. Note that your answer should be in exact form and be given in terms of m and q.

Solution: To find $T^{-1}(m)$, we solve for v in the equation $m=q+\frac{\ln (v+2)}{\ln (5)}$.

$$
\begin{array}{rlrl}
m & =q+\frac{\ln (v+2)}{\ln (5)} & \text { Exponentiating: } \quad e^{\ln (5)(m-q)}=v+2 \\
m-q & =\frac{\ln (v+2)}{\ln (5)} & e^{\ln (5)(m-q)}-2=v \\
(\ln (5))(m-q) & =\ln (v+2) & & \text { Thus } T^{-1}(m)=e^{\ln (5)(m-q)}-2 .
\end{array}
$$

Note that $e^{\ln (5)(m-q)}=\left(e^{\ln (5)}\right)^{m-q}=5^{m-q}$ so we can simplify to $T^{-1}(m)=5^{m-q}-2$.

Answer: $\quad T^{-1}(m)=\quad 5^{m-q}-2 \quad$ (or $\left.\quad e^{\ln (5)(m-q)}-2\right)$

