5. [5 points] Find a formula for one polynomial $p(z)$ that satisfies all of the following conditions:

- $\lim _{z \rightarrow \infty} p(z)=-\infty$ and $\lim _{z \rightarrow-\infty} p(z)=-\infty$
- The only zeros of $p(z)$ are $z=-2, z=1$, and $z=3$.
- The point $(2,-12)$ is on the graph of $p(z)$.
- The degree of $p(z)$ is at most 5 .

Show your work and reasoning carefully. You might find it helpful to first sketch a graph.
There may be more than one possible answer, but you should give only one answer.
Solution: Because $\lim _{z \rightarrow \infty} p(z)=-\infty$ and $\lim _{z \rightarrow-\infty} p(z)=-\infty$, we know that the degree of $p(z)$ is even and the leading coefficient is negative.
Because $p(z)$ has zeros at $z=-2, z=1$, and $z=3$, the degree of the polynomial must be at least 3 . Since it has to be of even degree less than 5 , the degree must be 4 . Thus there must be exactly one double zero.
Since the point $(2,-12)$ is on the graph, we can see by sketching the graph that the double zero must be at $z=3$.
So, we have $p(z)=a(z+2)(z-1)(z-3)^{2}$ for some negative constant a.
Since $p(2)=-12$ we find $-12=p(2)=a(2+2)(2-1)(2-3)^{2}=a(4)(1)(-1)^{2}=4 a \quad$ so $\quad a=-3$. Thus, $p(z)=-3(z+2)(z-1)(z-3)^{2}$.

$$
\text { Answer: } \quad p(z)=\frac{-3(z+2)(z-1)(z-3)^{2}}{}
$$

6. [5 points] Find all solutions to the equation

$$
5 \tan \left(2 x+\frac{\pi}{2}\right)-13=12
$$

for x between 0 and 5. Show your work carefully and give your answer(s) in exact form.
Solution:

$$
5 \tan \left(2 x+\frac{\pi}{2}\right)-13=12 \quad \text { so } \quad 5 \tan \left(2 x+\frac{\pi}{2}\right)=25 \quad \text { and } \quad \tan \left(2 x+\frac{\pi}{2}\right)=5
$$

Using the inverse tangent function, we find that one solution to the equation is given by

$$
2 x+\frac{\pi}{2}=\arctan (5) \quad \text { so } \quad 2 x=\arctan (5)-\frac{\pi}{2} \quad \text { and } \quad x=\frac{\arctan (5)-\frac{\pi}{2}}{2}
$$

Note that the period of $5 \tan \left(2 x+\frac{\pi}{2}\right)-13$ is $\pi / 2$ and that the solution $\frac{\arctan (5)-\frac{\pi}{2}}{2}$ is not in the interval $[0,5]$. Other solutions to the equation are obtained by adding integer multiples of the period $\pi / 2$ to $\frac{\arctan (5)-\frac{\pi}{2}}{2}$. The resulting solutions in the interval $[0,5]$ are

$$
\frac{\arctan (5)-\frac{\pi}{2}}{2}+\frac{\pi}{2} \quad, \quad \frac{\arctan (5)-\frac{\pi}{2}}{2}+\pi, \text { and } \frac{\arctan (5)-\frac{\pi}{2}}{2}+\frac{3 \pi}{2} .
$$

These can be simplified to $\frac{\arctan (5)}{2}+\frac{\pi}{4} \quad, \quad \frac{\arctan (5)}{2}+\frac{3 \pi}{4} \quad$, and $\frac{\arctan (5)}{2}+\frac{5 \pi}{4}$.

Answer: $x=$

$$
\frac{\arctan (5)}{2}+\frac{\pi}{4} \quad, \quad \frac{\arctan (5)}{2}+\frac{3 \pi}{4} \quad, \text { and } \quad \frac{\arctan (5)}{2}+\frac{5 \pi}{4}
$$

