The velociraptor population on the earth one year and four years after a huge meteor hits the earth is 2 million and 1.6 million respectively. Let \(P \) be the velociraptor population (in millions) on the earth \(t \) years after the meteor hits the earth.

c. [1 point] Under which assumption does \(P \) decrease faster to 0, if we assume that \(P = g(t) \) or if we assume that \(P = h(t) \)? Circle your answer.

\[
P = g(t) \quad P = h(t) \quad \text{Cannot be determined.}
\]

d. [3 points] Suppose that the velociraptor population on the earth decreased linearly after the meteor hits the earth. In this case, \(P = f(t) \) for some function \(f \). Find a formula for \(f(t) \).

\[
f(t) = \text{formula here}
\]

e. [2 points] Give a practical interpretation of the horizontal intercept of the graph \(P = f(t) \).

12. [6 points] Let \(N(x) \) be the cost (in dollars) to produce \(x \) pieces of chocolate. The chocolates are then put into boxes containing ten pieces of chocolate each. The packaging costs for each box of chocolates is $0.15. Write down a mathematical expression describing the following.

a. [2 points] The average cost (in dollars per piece of chocolate) of producing \(c \) chocolates.

Answer=________________________

b. [2 points] The cost in dollars of producing the fifteenth piece of chocolate.

Answer=________________________

c. [2 points] The total cost in dollars (including packaging costs) of producing \(b \) boxes of chocolate.

Answer=________________________