5. [8 points] The graph of the function \(f \) defined on the domain \([0, 4]\) is drawn below in Figure A.

\[y = f(x) \]

\[y = f^{-1}(x) \]

Figure A

Figure B

a. [4 points] Sketch the graph \(y = f^{-1}(x) \) in Figure B.

b. [4 points] Write down a piecewise formula for the function \(f \).

\[
f(x) = \begin{cases} \text{ } & \text{ } \\
\text{ } & \text{ } \\
\end{cases}
\]

6. [6 points] Let \(g \) be a function defined on the real line. Some values of \(g \) are shown below.

<table>
<thead>
<tr>
<th>(x)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(g(x))</td>
<td>0</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

a. [2 points] If \(g \) were an odd function, what should the value of \(g(-1) \) be?

\(g(-1) = \) ________________

b. [2 points] If \(g \) were a periodic function of period 5, what should the value of \(g(-3) \) be?

\(g(-3) = \) ________________

c. [2 points] Let \(k \) be the function defined by \(k(x) = g(2x + 5) \). What is \(k(-1) \)?

\(k(-1) = \) ________________