The velociraptor population on the earth one year and four years after a huge meteor hits the earth is 2 million and 1.6 million respectively. Let P be the velociraptor population (in millions) on the earth t years after the meteor hits the earth.
c. [1 point] Under which assumption does P decrease faster to 0 , if we assume that $P=g(t)$ or if we assume that $P=h(t)$? Circle your answer.

Solution:

$$
P=g(t) \quad P=h(t) \quad \text { Cannot be determined. }
$$

d. [3 points] Suppose that the velociraptor population on the earth decreased linearly after the meteor hits the earth. In this case, $P=f(t)$ for some function f. Find a formula for $f(t)$.

$$
\text { Solution: } \quad m=\frac{2-1.6}{1-4}=-\frac{0.4}{3} \text {, then } f(t)=2-\frac{0.4}{3}(t-1) \text {. }
$$

e. [2 points] Give a practical interpretation of the horizontal intercept of the graph $P=f(t)$.

Solution: The number of years after the meteor hit earth needed to eradicate the population of velociraptors.
12. [6 points] Let $N(x)$ be the cost (in dollars) to produce x pieces of chocolate. The chocolates are then put into boxes containing ten pieces of chocolate each. The packaging costs for each box of chocolates is $\$ 0.15$. Write down a mathematical expression describing the following.
a. [2 points] The average cost (in dollars per piece of chocolate) of producing c chocolates.

$$
\text { Solution: } \frac{N(c)}{c}
$$

b. [2 points] The cost in dollars of producing the fifteenth piece of chocolate.

$$
\text { Solution: } \quad N(15)-N(14)
$$

c. [2 points] The total cost in dollars (including packaging costs) of producing boxes of chocolate.

$$
\text { Solution: } 0.15 b+N(10 b) .
$$

