2. [7 points]

a. [3 points] Let $f(x)=\ln (x)$ and let g be the function whose graph is obtained by performing the following transformations to the graph of f, in the following order:

1) A horizontal stretch by a factor of 3 .
2) A horizontal shift to the left by 1 .
3) A vertical compression by factor of $\frac{1}{5}$.

Write down a formula for $g(x)$
Solution: $\quad g(x)=\frac{1}{5} \ln \left(\frac{1}{3} x(x+1)\right)$
b. [4 points] The graph $y=K(x)$ has the line $y=2$ as its horizontal asymptote and a horizontal intercept at $(1,0)$. Let H be the function given by the formula $H(x)=-\frac{1}{7} K(2 x+3)$. Find the the horizontal intercept and the equation of the horizontal asymptote of the graph $y=H(x)$.

Solution: Horizontal asymptote: $y=-\frac{2}{7}$.
Horizontal intercept: $(-1,0)$
3. [6 points]
a. [4 points] Let a be a non-zero number. Find the zeroes of the polynomial $3 x\left(x^{2}+a x\right)^{2}$ and indicate if each zero is a double zero or a triple zero.
Solution: $p(x)=3 x^{3}(x+a)^{2}$. Zeros : $x=0$ (triple zero) and $x=-a$ (double zero).
b. [2 points] Let f and g be functions given by the formulas

$$
f(x)=\sqrt{1+7 \sqrt{x}} \quad \text { and } \quad h(x)=\sqrt{x} .
$$

If g is a function such that $f(x)=g(h(x))$, find a formula for $g(x)$.
Solution: Since $f(x)=\sqrt{1+7 \sqrt{x}}=\sqrt{1+7 h(x)}$, then $g(x)=\sqrt{1+7 x}$.

