2. [7 points]
 a. [3 points] Let \(f(x) = \ln(x) \) and let \(g \) be the function whose graph is obtained by performing the following transformations to the graph of \(f \), in the following order:
 1) A horizontal stretch by a factor of 3.
 2) A horizontal shift to the left by 1.
 3) A vertical compression by factor of \(\frac{1}{5} \).
 Write down a formula for \(g(x) \)

 Solution: \(g(x) = \frac{1}{5} \ln \left(\frac{1}{3} x(x + 1) \right) \)

 b. [4 points] The graph \(y = K(x) \) has the line \(y = 2 \) as its horizontal asymptote and a horizontal intercept at \((1, 0) \). Let \(H \) be the function given by the formula \(H(x) = -\frac{1}{7} K(2x+3) \). Find the horizontal intercept and the equation of the horizontal asymptote of the graph \(y = H(x) \).

 Solution: Horizontal asymptote: \(y = -\frac{2}{7} \).
 Horizontal intercept: \((-1, 0) \)

3. [6 points]
 a. [4 points] Let \(a \) be a non-zero number. Find the zeroes of the polynomial \(3x(x^2 + ax)^2 \) and indicate if each zero is a double zero or a triple zero.

 Solution: \(p(x) = 3x^3(x + a)^2 \). Zeros: \(x = 0 \) (triple zero) and \(x = -a \) (double zero).

 b. [2 points] Let \(f \) and \(g \) be functions given by the formulas

 \[
 f(x) = \sqrt{1 + 7\sqrt{x}} \quad \text{and} \quad h(x) = \sqrt{x}.
 \]

 If \(g \) is a function such that \(f(x) = g(h(x)) \), find a formula for \(g(x) \).

 Solution: Since \(f(x) = \sqrt{1 + 7\sqrt{x}} = \sqrt{1 + 7h(x)} \), then \(g(x) = \sqrt{1 + 7x} \).