5. [8 points] The graph of the function f defined on the domain $[0,4]$ is drawn below.

$y=f(x)$

$y=f^{-1}(x)$
a. [4 points] Using the axis above (labelled " $y=f^{-1}(x)$ "), sketch the graph $y=f^{-1}(x)$.
b. [4 points] Write down a piecewise formula for the function f.

Solution:

$$
f(x)= \begin{cases}2 x & 0 \leq x<1 \\ 4-\frac{2}{3}(x-1) & 1 \leq x \leq 4\end{cases}
$$

6. [6 points] Let g be a function defined on the real line. Some values of g are shown below.

x	0	1	2	3
$g(x)$	0	5	6	7

a. [2 points] If g were an odd function, what should the value of $g(-1)$ be?

Solution: $\quad g(-1)=-g(1)=-5$
b. [2 points] If g were a periodic function of period 5 , what should the value of $g(-3)$ be?

Solution: $\quad g(-3)=g(-3+5)=g(2)=6$
c. [2 points] Let k be the function defined by $k(x)=g(2 x+5)$. What is $k(-1)$?

Solution: $k(-1)=g(2(-1)+5)=g(3)=7$.

