2. [14 points]
 a. [3 points] The population of aliens on planet Maize increases at a constant rate of 10 aliens every two years. We know that in 2005 there were 120 aliens on planet Maize. Find a formula for \(M(t) \), the function which gives the number of aliens on planet Maize \(t \) years after 2000.

 \[
 M(t) = \underline{\text{}}
 \]

 b. [3 points] Suppose that the population of aliens on planet Yellow in any given year is a thousand more the population of aliens on planet Maize ten years earlier. Find a formula for \(Y(t) \), the population of planet Yellow \(t \) years after 2000, in terms of the function \(M \).

 \[
 Y(t) = \underline{\text{}}
 \]

 c. [3 points] The population of aliens on the planet Blue decreases at a continuous percent rate of 10 \% per year. We know that in 2002 there were 100 aliens on planet Blue. Find a formula for \(B(t) \), the function which gives the number of aliens on planet Blue \(t \) years after 2000.

 \[
 B(t) = \underline{\text{}}
 \]

 d. [5 points] The alien population on planet Navy \(t \) years after 2000 is given by the function \(N(t) \), where

 \[
 N(t) = \frac{100}{1 + t^2}.
 \]

 Find the average rate of change of \(N(t) \) over the interval \([1, 3]\) and give a practical interpretation of your result.

 \[
 \text{Average rate of change:} \underline{\text{}}
 \]

 Interpretation: