6. [10 points]
a. [5 points] The temperature T (in degrees Fahrenheit) at a point next to a campfire is inversely proportional to the square of its distance d (in meters) from the fire. If the temperature at a point 0.5 meters away from the fire is $500^{\circ} \mathrm{F}$, what is the temperature (in degrees Fahrenheit) at 1.5 meters away from the fire? Show all your work to receive full credit.

Solution: $\quad T=\frac{k}{d^{2}}$ so $500=\frac{k}{0.5^{2}}$ and $k=500(0.5)^{2}=125$.
Thus the temperature at 1.5 meters is $T=\frac{125}{1.5^{2}} \approx 55.56^{\circ} \mathrm{F}$
b. [2 points] Let $H(x)=\left(x^{3}+1\right)^{2}$. Find two functions $K(x)$ and $J(x)$ such that $K(J(x))=H(x)$. Your functions should satisfy $K(x) \neq x$ and $J(x) \neq x$.

$$
\text { Solution: } \quad K(x)=x^{2} \quad J(x)=x^{3}+1 \quad \text { or } \quad K(x)=(x+1)^{2} \quad J(x)=x^{3}
$$

c. [3 points] The shadow (the segment BC) made by a 150 -foot-tall building has a length of 200 feet. Find the value, in radians, of the angle ABC.

Solution: Let $\theta=$ angle ABC , then $\tan \theta=\frac{150}{200}$. Hence $\tan ^{-1}\left(\frac{150}{200}\right) \approx 0.643$ radians.

