7. [10 points] The following table gives some values of the two functions $f(x)$ and $g(x)$.

x	2	8
$f(x)$	20	160
$g(x)$	4	12

a. [5 points] Suppose the function $f(x)$ is an exponential function. Find a formula for $f(x)$. Your answer must be in exact form. Show all your work.

Solution:

$$
\begin{aligned}
a b^{8} & =160 \\
a b^{2} & =20 \\
\frac{a b^{8}}{a b^{2}} & =\frac{160}{20} \quad b^{6}=8 \quad \text { hence } \quad b=8^{\frac{1}{6}} \\
20 & =a 8^{\frac{2}{6}}=2 a \\
f(x) & =10(8)^{\frac{x}{6}}
\end{aligned}
$$

b. [5 points] Suppose that $g(x)$ is a power function. Find a formula for $g(x)$. Your answer must be in exact form. Show all your work.

Solution:

$$
\begin{array}{rlrlrl}
k\left(8^{p}\right) & =12 & & \\
k\left(2^{p}\right) & =4 & & & \\
\frac{k 8^{p}}{k 2^{p}} & =\frac{12}{4}=3 \quad \text { then } & & 4^{p}=3 . \\
\ln \left(4^{p}\right) & =\ln (3) \quad \text { implies } & & p=\frac{\ln (3)}{\ln (4)} \\
4 & =k 2^{\frac{\ln 3}{\ln 4}} \quad \text { yields } & & k=\frac{4}{2^{\frac{\ln 3}{\ln 4}}}
\end{array}
$$

$g(x)=\frac{4}{2^{\frac{\ln 3}{\ln 4}}} x^{\frac{\ln 3}{\operatorname{nn} 4}}$.

