11. [5 points] A portion of the graphs of $y = f(x)$ and $y = g(x)$ are given below. You do not need to show any work for this problem.

\[\begin{array}{c}
\text{Graph of } f(x) \\
(0,1) \\
(-1,0)
\end{array} \quad \begin{array}{c}
\text{Graph of } g(x) \\
(0,0) \\
(-0.5,-2)
\end{array}\]

a. [2 points] Assume that $g(x)$ is an invertible function. Which of the following could be the graph of $y = g^{-1}(x)$? Circle exactly one of the four graphs below.

\[\begin{array}{c}
\text{Graph of } g^{-1}(x) \\
(0,0) \\
(-2,-0.5)
\end{array} \quad \begin{array}{c}
\text{Graph of } g^{-1}(x) \\
(0,0) \\
(-1,-1)
\end{array}\]

\[\begin{array}{c}
\text{Graph of } g^{-1}(x) \\
(0,0) \\
(-0.5,2)
\end{array} \quad \begin{array}{c}
\text{Graph of } g^{-1}(x) \\
(0,0) \\
(1,-1)
\end{array}\]

This problem continues on the next page.
The graphs of $y = f(x)$ and $y = g(x)$ from the previous page have been reproduced below for your convenience.

b. [3 points] Which of the following could be the graph of $y = g(f(x))$? **Circle exactly one of the four graphs below.**